Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnophdi | Structured version Visualization version GIF version |
Description: The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopco.1 | ⊢ 𝑆 ∈ LinOp |
lnopco.2 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
lnophdi | ⊢ (𝑆 −op 𝑇) ∈ LinOp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lnopco.1 | . . . 4 ⊢ 𝑆 ∈ LinOp | |
2 | 1 | lnopfi 28212 | . . 3 ⊢ 𝑆: ℋ⟶ ℋ |
3 | lnopco.2 | . . . 4 ⊢ 𝑇 ∈ LinOp | |
4 | 3 | lnopfi 28212 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ |
5 | 2, 4 | honegsubi 28039 | . 2 ⊢ (𝑆 +op (-1 ·op 𝑇)) = (𝑆 −op 𝑇) |
6 | neg1cn 11001 | . . . 4 ⊢ -1 ∈ ℂ | |
7 | 3 | lnopmi 28243 | . . . 4 ⊢ (-1 ∈ ℂ → (-1 ·op 𝑇) ∈ LinOp) |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (-1 ·op 𝑇) ∈ LinOp |
9 | 1, 8 | lnophsi 28244 | . 2 ⊢ (𝑆 +op (-1 ·op 𝑇)) ∈ LinOp |
10 | 5, 9 | eqeltrri 2685 | 1 ⊢ (𝑆 −op 𝑇) ∈ LinOp |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1977 (class class class)co 6549 ℂcc 9813 1c1 9816 -cneg 10146 +op chos 27179 ·op chot 27180 −op chod 27181 LinOpclo 27188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-hilex 27240 ax-hfvadd 27241 ax-hvcom 27242 ax-hvass 27243 ax-hv0cl 27244 ax-hvaddid 27245 ax-hfvmul 27246 ax-hvmulid 27247 ax-hvmulass 27248 ax-hvdistr1 27249 ax-hvdistr2 27250 ax-hvmul0 27251 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 df-sub 10147 df-neg 10148 df-hvsub 27212 df-hosum 27973 df-homul 27974 df-hodif 27975 df-lnop 28084 |
This theorem is referenced by: lnopeqi 28251 |
Copyright terms: Public domain | W3C validator |