HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopcoi Structured version   Unicode version

Theorem lnopcoi 25579
Description: The composition of two linear operators is linear. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnopco.1  |-  S  e. 
LinOp
lnopco.2  |-  T  e. 
LinOp
Assertion
Ref Expression
lnopcoi  |-  ( S  o.  T )  e. 
LinOp

Proof of Theorem lnopcoi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnopco.1 . . . 4  |-  S  e. 
LinOp
21lnopfi 25545 . . 3  |-  S : ~H
--> ~H
3 lnopco.2 . . . 4  |-  T  e. 
LinOp
43lnopfi 25545 . . 3  |-  T : ~H
--> ~H
52, 4hocofi 25342 . 2  |-  ( S  o.  T ) : ~H --> ~H
63lnopli 25544 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  ( T `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) )
76fveq2d 5806 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  ( S `  ( T `  ( ( x  .h  y )  +h  z
) ) )  =  ( S `  (
( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) ) )
8 id 22 . . . . . . . 8  |-  ( x  e.  CC  ->  x  e.  CC )
94ffvelrni 5954 . . . . . . . 8  |-  ( y  e.  ~H  ->  ( T `  y )  e.  ~H )
104ffvelrni 5954 . . . . . . . 8  |-  ( z  e.  ~H  ->  ( T `  z )  e.  ~H )
111lnopli 25544 . . . . . . . 8  |-  ( ( x  e.  CC  /\  ( T `  y )  e.  ~H  /\  ( T `  z )  e.  ~H )  ->  ( S `  ( (
x  .h  ( T `
 y ) )  +h  ( T `  z ) ) )  =  ( ( x  .h  ( S `  ( T `  y ) ) )  +h  ( S `  ( T `  z ) ) ) )
128, 9, 10, 11syl3an 1261 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  ( S `  ( (
x  .h  ( T `
 y ) )  +h  ( T `  z ) ) )  =  ( ( x  .h  ( S `  ( T `  y ) ) )  +h  ( S `  ( T `  z ) ) ) )
137, 12eqtrd 2495 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  ( S `  ( T `  ( ( x  .h  y )  +h  z
) ) )  =  ( ( x  .h  ( S `  ( T `  y )
) )  +h  ( S `  ( T `  z ) ) ) )
14133expa 1188 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( S `  ( T `  ( ( x  .h  y )  +h  z ) ) )  =  ( ( x  .h  ( S `
 ( T `  y ) ) )  +h  ( S `  ( T `  z ) ) ) )
15 hvmulcl 24587 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
16 hvaddcl 24586 . . . . . . 7  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z
)  e.  ~H )
1715, 16sylan 471 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
182, 4hocoi 25340 . . . . . 6  |-  ( ( ( x  .h  y
)  +h  z )  e.  ~H  ->  (
( S  o.  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( S `  ( T `  ( ( x  .h  y )  +h  z ) ) ) )
1917, 18syl 16 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( S  o.  T ) `  ( ( x  .h  y )  +h  z
) )  =  ( S `  ( T `
 ( ( x  .h  y )  +h  z ) ) ) )
202, 4hocoi 25340 . . . . . . . 8  |-  ( y  e.  ~H  ->  (
( S  o.  T
) `  y )  =  ( S `  ( T `  y ) ) )
2120oveq2d 6219 . . . . . . 7  |-  ( y  e.  ~H  ->  (
x  .h  ( ( S  o.  T ) `
 y ) )  =  ( x  .h  ( S `  ( T `  y )
) ) )
2221adantl 466 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  (
( S  o.  T
) `  y )
)  =  ( x  .h  ( S `  ( T `  y ) ) ) )
232, 4hocoi 25340 . . . . . 6  |-  ( z  e.  ~H  ->  (
( S  o.  T
) `  z )  =  ( S `  ( T `  z ) ) )
2422, 23oveqan12d 6222 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  ( ( S  o.  T ) `  y ) )  +h  ( ( S  o.  T ) `  z
) )  =  ( ( x  .h  ( S `  ( T `  y ) ) )  +h  ( S `  ( T `  z ) ) ) )
2514, 19, 243eqtr4d 2505 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( S  o.  T ) `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  (
( S  o.  T
) `  y )
)  +h  ( ( S  o.  T ) `
 z ) ) )
26253impa 1183 . . 3  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( S  o.  T
) `  ( (
x  .h  y )  +h  z ) )  =  ( ( x  .h  ( ( S  o.  T ) `  y ) )  +h  ( ( S  o.  T ) `  z
) ) )
2726rgen3 2919 . 2  |-  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( ( S  o.  T ) `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( ( S  o.  T ) `
 y ) )  +h  ( ( S  o.  T ) `  z ) )
28 ellnop 25434 . 2  |-  ( ( S  o.  T )  e.  LinOp 
<->  ( ( S  o.  T ) : ~H --> ~H  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( ( S  o.  T ) `  (
( x  .h  y
)  +h  z ) )  =  ( ( x  .h  ( ( S  o.  T ) `
 y ) )  +h  ( ( S  o.  T ) `  z ) ) ) )
295, 27, 28mpbir2an 911 1  |-  ( S  o.  T )  e. 
LinOp
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799    o. ccom 4955   -->wf 5525   ` cfv 5529  (class class class)co 6203   CCcc 9394   ~Hchil 24493    +h cva 24494    .h csm 24495   LinOpclo 24521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-hilex 24573  ax-hfvadd 24574  ax-hfvmul 24579
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-map 7329  df-lnop 25417
This theorem is referenced by:  lnopco0i  25580  nmopcoi  25671  bdopcoi  25674  nmopcoadj0i  25679
  Copyright terms: Public domain W3C validator