MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindff1 Structured version   Visualization version   GIF version

Theorem lindff1 19978
Description: A linearly independent family over a nonzero ring has no repeated elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindff1.b 𝐵 = (Base‘𝑊)
lindff1.l 𝐿 = (Scalar‘𝑊)
Assertion
Ref Expression
lindff1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1𝐵)

Proof of Theorem lindff1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1056 . . 3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹 LIndF 𝑊)
2 simp1 1054 . . 3 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝑊 ∈ LMod)
3 lindff1.b . . . 4 𝐵 = (Base‘𝑊)
43lindff 19973 . . 3 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹𝐵)
51, 2, 4syl2anc 691 . 2 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹𝐵)
6 simpl1 1057 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑊 ∈ LMod)
7 imassrn 5396 . . . . . . . . . 10 (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ran 𝐹
8 frn 5966 . . . . . . . . . . 11 (𝐹:dom 𝐹𝐵 → ran 𝐹𝐵)
95, 8syl 17 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ran 𝐹𝐵)
107, 9syl5ss 3579 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵)
1110adantr 480 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵)
12 eqid 2610 . . . . . . . . 9 (LSpan‘𝑊) = (LSpan‘𝑊)
133, 12lspssid 18806 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ 𝐵) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
146, 11, 13syl2anc 691 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹 “ (dom 𝐹 ∖ {𝑦})) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
15 ffun 5961 . . . . . . . . . . 11 (𝐹:dom 𝐹𝐵 → Fun 𝐹)
165, 15syl 17 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → Fun 𝐹)
1716adantr 480 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → Fun 𝐹)
18 simprll 798 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑥 ∈ dom 𝐹)
1917, 18jca 553 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (Fun 𝐹𝑥 ∈ dom 𝐹))
20 eldifsn 4260 . . . . . . . . . . 11 (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) ↔ (𝑥 ∈ dom 𝐹𝑥𝑦))
2120biimpri 217 . . . . . . . . . 10 ((𝑥 ∈ dom 𝐹𝑥𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
2221adantlr 747 . . . . . . . . 9 (((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
2322adantl 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑥 ∈ (dom 𝐹 ∖ {𝑦}))
24 funfvima 6396 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝑥 ∈ (dom 𝐹 ∖ {𝑦}) → (𝐹𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦}))))
2519, 23, 24sylc 63 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ (𝐹 “ (dom 𝐹 ∖ {𝑦})))
2614, 25sseldd 3569 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
27 simpl2 1058 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝐿 ∈ NzRing)
28 simpl3 1059 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝐹 LIndF 𝑊)
29 simprlr 799 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → 𝑦 ∈ dom 𝐹)
30 lindff1.l . . . . . . . 8 𝐿 = (Scalar‘𝑊)
3112, 30lindfind2 19976 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing) ∧ 𝐹 LIndF 𝑊𝑦 ∈ dom 𝐹) → ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
326, 27, 28, 29, 31syl211anc 1324 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))))
33 nelne2 2879 . . . . . 6 (((𝐹𝑥) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦}))) ∧ ¬ (𝐹𝑦) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑦})))) → (𝐹𝑥) ≠ (𝐹𝑦))
3426, 32, 33syl2anc 691 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ ((𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹) ∧ 𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
3534expr 641 . . . 4 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦)))
3635necon4d 2806 . . 3 (((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) ∧ (𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3736ralrimivva 2954 . 2 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
38 dff13 6416 . 2 (𝐹:dom 𝐹1-1𝐵 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑦 ∈ dom 𝐹((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
395, 37, 38sylanbrc 695 1 ((𝑊 ∈ LMod ∧ 𝐿 ∈ NzRing ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  cdif 3537  wss 3540  {csn 4125   class class class wbr 4583  dom cdm 5038  ran crn 5039  cima 5041  Fun wfun 5798  wf 5800  1-1wf1 5801  cfv 5804  Basecbs 15695  Scalarcsca 15771  LModclmod 18686  LSpanclspn 18792  NzRingcnzr 19078   LIndF clindf 19962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793  df-nzr 19079  df-lindf 19964
This theorem is referenced by:  islindf3  19984  matunitlindflem2  32576
  Copyright terms: Public domain W3C validator