Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldgenpisys Structured version   Visualization version   GIF version

Theorem ldgenpisys 29556
Description: The lambda system 𝐸 generated by a pi-system 𝑇 is also a pi-system. (Contributed by Thierry Arnoux, 18-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
dynkin.o (𝜑𝑂𝑉)
ldgenpisys.e 𝐸 = {𝑡𝐿𝑇𝑡}
ldgenpisys.1 (𝜑𝑇𝑃)
Assertion
Ref Expression
ldgenpisys (𝜑𝐸𝑃)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝐿   𝑂,𝑠,𝑡,𝑥   𝑡,𝑃,𝑥,𝑦   𝐿,𝑠   𝑇,𝑠,𝑡,𝑥   𝜑,𝑡,𝑥   𝐸,𝑠,𝑡,𝑥,𝑦   𝑦,𝑂   𝑦,𝑇   𝑥,𝑉   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑠)   𝑃(𝑠)   𝑉(𝑦,𝑡,𝑠)

Proof of Theorem ldgenpisys
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3650 . . . 4 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))} ⊆ 𝒫 𝒫 𝑂
2 ldgenpisys.e . . . . . 6 𝐸 = {𝑡𝐿𝑇𝑡}
3 dynkin.l . . . . . . 7 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
4 dynkin.o . . . . . . 7 (𝜑𝑂𝑉)
5 ssrab2 3650 . . . . . . . . 9 {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} ⊆ 𝒫 𝒫 𝑂
6 ldgenpisys.1 . . . . . . . . . 10 (𝜑𝑇𝑃)
7 dynkin.p . . . . . . . . . 10 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
86, 7syl6eleq 2698 . . . . . . . . 9 (𝜑𝑇 ∈ {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠})
95, 8sseldi 3566 . . . . . . . 8 (𝜑𝑇 ∈ 𝒫 𝒫 𝑂)
109elpwid 4118 . . . . . . 7 (𝜑𝑇 ⊆ 𝒫 𝑂)
113, 4, 10ldsysgenld 29550 . . . . . 6 (𝜑 {𝑡𝐿𝑇𝑡} ∈ 𝐿)
122, 11syl5eqel 2692 . . . . 5 (𝜑𝐸𝐿)
1312, 3syl6eleq 2698 . . . 4 (𝜑𝐸 ∈ {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))})
141, 13sseldi 3566 . . 3 (𝜑𝐸 ∈ 𝒫 𝒫 𝑂)
15 simprr 792 . . . . . . 7 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → 𝑏𝐸)
16 simprl 790 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → 𝑎𝐸)
174adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑂𝑉)
186adantr 480 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑇𝑃)
19 simpr 476 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑎𝐸)
2010adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑎𝐸) → 𝑇 ⊆ 𝒫 𝑂)
2120sselda 3568 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑏 ∈ 𝒫 𝑂)
22 incom 3767 . . . . . . . . . . . . . . . 16 (𝑏𝑎) = (𝑎𝑏)
234ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑂𝑉)
246ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑇𝑃)
25 simpr 476 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑏𝑇)
267, 3, 23, 2, 24, 25ldgenpisyslem3 29555 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏𝑐) ∈ 𝐸})
27 simplr 788 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑎𝐸)
2826, 27sseldd 3569 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑎 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏𝑐) ∈ 𝐸})
29 ineq2 3770 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = 𝑎 → (𝑏𝑐) = (𝑏𝑎))
3029eleq1d 2672 . . . . . . . . . . . . . . . . . . 19 (𝑐 = 𝑎 → ((𝑏𝑐) ∈ 𝐸 ↔ (𝑏𝑎) ∈ 𝐸))
3130elrab 3331 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑏𝑐) ∈ 𝐸} ↔ (𝑎 ∈ 𝒫 𝑂 ∧ (𝑏𝑎) ∈ 𝐸))
3228, 31sylib 207 . . . . . . . . . . . . . . . . 17 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑎 ∈ 𝒫 𝑂 ∧ (𝑏𝑎) ∈ 𝐸))
3332simprd 478 . . . . . . . . . . . . . . . 16 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑏𝑎) ∈ 𝐸)
3422, 33syl5eqelr 2693 . . . . . . . . . . . . . . 15 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑎𝑏) ∈ 𝐸)
3521, 34jca 553 . . . . . . . . . . . . . 14 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → (𝑏 ∈ 𝒫 𝑂 ∧ (𝑎𝑏) ∈ 𝐸))
36 ineq2 3770 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑏 → (𝑎𝑐) = (𝑎𝑏))
3736eleq1d 2672 . . . . . . . . . . . . . . 15 (𝑐 = 𝑏 → ((𝑎𝑐) ∈ 𝐸 ↔ (𝑎𝑏) ∈ 𝐸))
3837elrab 3331 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸} ↔ (𝑏 ∈ 𝒫 𝑂 ∧ (𝑎𝑏) ∈ 𝐸))
3935, 38sylibr 223 . . . . . . . . . . . . 13 (((𝜑𝑎𝐸) ∧ 𝑏𝑇) → 𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
4039ex 449 . . . . . . . . . . . 12 ((𝜑𝑎𝐸) → (𝑏𝑇𝑏 ∈ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸}))
4140ssrdv 3574 . . . . . . . . . . 11 ((𝜑𝑎𝐸) → 𝑇 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
427, 3, 17, 2, 18, 19, 41ldgenpisyslem2 29554 . . . . . . . . . 10 ((𝜑𝑎𝐸) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
4316, 42syldan 486 . . . . . . . . 9 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → 𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸})
44 ssrab 3643 . . . . . . . . 9 (𝐸 ⊆ {𝑐 ∈ 𝒫 𝑂 ∣ (𝑎𝑐) ∈ 𝐸} ↔ (𝐸 ⊆ 𝒫 𝑂 ∧ ∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸))
4543, 44sylib 207 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → (𝐸 ⊆ 𝒫 𝑂 ∧ ∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸))
4645simprd 478 . . . . . . 7 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → ∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸)
4737rspcv 3278 . . . . . . 7 (𝑏𝐸 → (∀𝑐𝐸 (𝑎𝑐) ∈ 𝐸 → (𝑎𝑏) ∈ 𝐸))
4815, 46, 47sylc 63 . . . . . 6 ((𝜑 ∧ (𝑎𝐸𝑏𝐸)) → (𝑎𝑏) ∈ 𝐸)
4948ralrimivva 2954 . . . . 5 (𝜑 → ∀𝑎𝐸𝑏𝐸 (𝑎𝑏) ∈ 𝐸)
50 inficl 8214 . . . . . 6 (𝐸𝐿 → (∀𝑎𝐸𝑏𝐸 (𝑎𝑏) ∈ 𝐸 ↔ (fi‘𝐸) = 𝐸))
5112, 50syl 17 . . . . 5 (𝜑 → (∀𝑎𝐸𝑏𝐸 (𝑎𝑏) ∈ 𝐸 ↔ (fi‘𝐸) = 𝐸))
5249, 51mpbid 221 . . . 4 (𝜑 → (fi‘𝐸) = 𝐸)
53 eqimss 3620 . . . 4 ((fi‘𝐸) = 𝐸 → (fi‘𝐸) ⊆ 𝐸)
5452, 53syl 17 . . 3 (𝜑 → (fi‘𝐸) ⊆ 𝐸)
5514, 54jca 553 . 2 (𝜑 → (𝐸 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝐸) ⊆ 𝐸))
567ispisys 29542 . 2 (𝐸𝑃 ↔ (𝐸 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝐸) ⊆ 𝐸))
5755, 56sylibr 223 1 (𝜑𝐸𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {crab 2900  cdif 3537  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372   cint 4410  Disj wdisj 4553   class class class wbr 4583  cfv 5804  ωcom 6957  cdom 7839  ficfi 8199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-cda 8873  df-siga 29498
This theorem is referenced by:  dynkin  29557
  Copyright terms: Public domain W3C validator