Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ispisys | Structured version Visualization version GIF version |
Description: The property of being a pi-system. (Contributed by Thierry Arnoux, 10-Jun-2020.) |
Ref | Expression |
---|---|
ispisys.p | ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} |
Ref | Expression |
---|---|
ispisys | ⊢ (𝑆 ∈ 𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6103 | . . 3 ⊢ (𝑠 = 𝑆 → (fi‘𝑠) = (fi‘𝑆)) | |
2 | id 22 | . . 3 ⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) | |
3 | 1, 2 | sseq12d 3597 | . 2 ⊢ (𝑠 = 𝑆 → ((fi‘𝑠) ⊆ 𝑠 ↔ (fi‘𝑆) ⊆ 𝑆)) |
4 | ispisys.p | . 2 ⊢ 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠} | |
5 | 3, 4 | elrab2 3333 | 1 ⊢ (𝑆 ∈ 𝑃 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑆) ⊆ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 ⊆ wss 3540 𝒫 cpw 4108 ‘cfv 5804 ficfi 8199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-iota 5768 df-fv 5812 |
This theorem is referenced by: ispisys2 29543 sigapildsyslem 29551 sigapildsys 29552 ldgenpisyslem1 29553 ldgenpisyslem3 29555 ldgenpisys 29556 |
Copyright terms: Public domain | W3C validator |