MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunisuc Structured version   Visualization version   GIF version

Theorem itunisuc 9124
Description: Successor iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunisuc ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunisuc
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 frsuc 7419 . . . . . 6 (𝐵 ∈ ω → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)))
2 fvex 6113 . . . . . . 7 ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V
3 unieq 4380 . . . . . . . 8 (𝑎 = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) → 𝑎 = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
4 unieq 4380 . . . . . . . . 9 (𝑦 = 𝑎 𝑦 = 𝑎)
54cbvmptv 4678 . . . . . . . 8 (𝑦 ∈ V ↦ 𝑦) = (𝑎 ∈ V ↦ 𝑎)
62uniex 6851 . . . . . . . 8 ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V
73, 5, 6fvmpt 6191 . . . . . . 7 (((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵) ∈ V → ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
82, 7ax-mp 5 . . . . . 6 ((𝑦 ∈ V ↦ 𝑦)‘((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵)
91, 8syl6eq 2660 . . . . 5 (𝐵 ∈ ω → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
109adantl 481 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
11 ituni.u . . . . . . 7 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
1211itunifval 9121 . . . . . 6 (𝐴 ∈ V → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
1312fveq1d 6105 . . . . 5 (𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵))
1413adantr 480 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘suc 𝐵))
1512fveq1d 6105 . . . . . 6 (𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1615adantr 480 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1716unieqd 4382 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ((rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω)‘𝐵))
1810, 14, 173eqtr4d 2654 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
19 uni0 4401 . . . . 5 ∅ = ∅
2019eqcomi 2619 . . . 4 ∅ =
2111itunifn 9122 . . . . . . . . . 10 (𝐴 ∈ V → (𝑈𝐴) Fn ω)
22 fndm 5904 . . . . . . . . . 10 ((𝑈𝐴) Fn ω → dom (𝑈𝐴) = ω)
2321, 22syl 17 . . . . . . . . 9 (𝐴 ∈ V → dom (𝑈𝐴) = ω)
2423eleq2d 2673 . . . . . . . 8 (𝐴 ∈ V → (suc 𝐵 ∈ dom (𝑈𝐴) ↔ suc 𝐵 ∈ ω))
25 peano2b 6973 . . . . . . . 8 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
2624, 25syl6bbr 277 . . . . . . 7 (𝐴 ∈ V → (suc 𝐵 ∈ dom (𝑈𝐴) ↔ 𝐵 ∈ ω))
2726notbid 307 . . . . . 6 (𝐴 ∈ V → (¬ suc 𝐵 ∈ dom (𝑈𝐴) ↔ ¬ 𝐵 ∈ ω))
2827biimpar 501 . . . . 5 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ¬ suc 𝐵 ∈ dom (𝑈𝐴))
29 ndmfv 6128 . . . . 5 (¬ suc 𝐵 ∈ dom (𝑈𝐴) → ((𝑈𝐴)‘suc 𝐵) = ∅)
3028, 29syl 17 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ∅)
3123eleq2d 2673 . . . . . . . 8 (𝐴 ∈ V → (𝐵 ∈ dom (𝑈𝐴) ↔ 𝐵 ∈ ω))
3231notbid 307 . . . . . . 7 (𝐴 ∈ V → (¬ 𝐵 ∈ dom (𝑈𝐴) ↔ ¬ 𝐵 ∈ ω))
3332biimpar 501 . . . . . 6 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ¬ 𝐵 ∈ dom (𝑈𝐴))
34 ndmfv 6128 . . . . . 6 𝐵 ∈ dom (𝑈𝐴) → ((𝑈𝐴)‘𝐵) = ∅)
3533, 34syl 17 . . . . 5 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ∅)
3635unieqd 4382 . . . 4 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘𝐵) = ∅)
3720, 30, 363eqtr4a 2670 . . 3 ((𝐴 ∈ V ∧ ¬ 𝐵 ∈ ω) → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
3818, 37pm2.61dan 828 . 2 (𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
39 0fv 6137 . . . . 5 (∅‘𝐵) = ∅
4039unieqi 4381 . . . 4 (∅‘𝐵) =
41 0fv 6137 . . . 4 (∅‘suc 𝐵) = ∅
4219, 40, 413eqtr4ri 2643 . . 3 (∅‘suc 𝐵) = (∅‘𝐵)
43 fvprc 6097 . . . 4 𝐴 ∈ V → (𝑈𝐴) = ∅)
4443fveq1d 6105 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = (∅‘suc 𝐵))
4543fveq1d 6105 . . . 4 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = (∅‘𝐵))
4645unieqd 4382 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = (∅‘𝐵))
4742, 44, 463eqtr4a 2670 . 2 𝐴 ∈ V → ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵))
4838, 47pm2.61i 175 1 ((𝑈𝐴)‘suc 𝐵) = ((𝑈𝐴)‘𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874   cuni 4372  cmpt 4643  dom cdm 5038  cres 5040  suc csuc 5642   Fn wfn 5799  cfv 5804  ωcom 6957  reccrdg 7392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393
This theorem is referenced by:  itunitc1  9125  itunitc  9126  ituniiun  9127
  Copyright terms: Public domain W3C validator