MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunisuc Structured version   Visualization version   Unicode version

Theorem itunisuc 8849
Description: Successor iterated union. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
Assertion
Ref Expression
itunisuc  |-  ( ( U `  A ) `
 suc  B )  =  U. ( ( U `
 A ) `  B )
Distinct variable groups:    x, A, y    x, B, y
Allowed substitution hints:    U( x, y)

Proof of Theorem itunisuc
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 frsuc 7154 . . . . . 6  |-  ( B  e.  om  ->  (
( rec ( ( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) `  suc  B )  =  ( ( y  e.  _V  |->  U. y ) `  (
( rec ( ( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) `  B ) ) )
2 fvex 5875 . . . . . . 7  |-  ( ( rec ( ( y  e.  _V  |->  U. y
) ,  A )  |`  om ) `  B
)  e.  _V
3 unieq 4206 . . . . . . . 8  |-  ( a  =  ( ( rec ( ( y  e. 
_V  |->  U. y ) ,  A )  |`  om ) `  B )  ->  U. a  =  U. ( ( rec ( ( y  e. 
_V  |->  U. y ) ,  A )  |`  om ) `  B ) )
4 unieq 4206 . . . . . . . . 9  |-  ( y  =  a  ->  U. y  =  U. a )
54cbvmptv 4495 . . . . . . . 8  |-  ( y  e.  _V  |->  U. y
)  =  ( a  e.  _V  |->  U. a
)
62uniex 6587 . . . . . . . 8  |-  U. (
( rec ( ( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) `  B )  e.  _V
73, 5, 6fvmpt 5948 . . . . . . 7  |-  ( ( ( rec ( ( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) `  B )  e.  _V  ->  ( ( y  e. 
_V  |->  U. y ) `  ( ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) `  B ) )  = 
U. ( ( rec ( ( y  e. 
_V  |->  U. y ) ,  A )  |`  om ) `  B ) )
82, 7ax-mp 5 . . . . . 6  |-  ( ( y  e.  _V  |->  U. y ) `  (
( rec ( ( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) `  B ) )  = 
U. ( ( rec ( ( y  e. 
_V  |->  U. y ) ,  A )  |`  om ) `  B )
91, 8syl6eq 2501 . . . . 5  |-  ( B  e.  om  ->  (
( rec ( ( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) `  suc  B )  =  U. ( ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) `  B ) )
109adantl 468 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  om )  ->  ( ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) `  suc  B )  =  U. ( ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) `  B ) )
11 ituni.u . . . . . . 7  |-  U  =  ( x  e.  _V  |->  ( rec ( ( y  e.  _V  |->  U. y
) ,  x )  |`  om ) )
1211itunifval 8846 . . . . . 6  |-  ( A  e.  _V  ->  ( U `  A )  =  ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) )
1312fveq1d 5867 . . . . 5  |-  ( A  e.  _V  ->  (
( U `  A
) `  suc  B )  =  ( ( rec ( ( y  e. 
_V  |->  U. y ) ,  A )  |`  om ) `  suc  B ) )
1413adantr 467 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  om )  ->  ( ( U `  A ) `  suc  B )  =  ( ( rec ( ( y  e.  _V  |->  U. y
) ,  A )  |`  om ) `  suc  B ) )
1512fveq1d 5867 . . . . . 6  |-  ( A  e.  _V  ->  (
( U `  A
) `  B )  =  ( ( rec ( ( y  e. 
_V  |->  U. y ) ,  A )  |`  om ) `  B ) )
1615adantr 467 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  om )  ->  ( ( U `  A ) `  B
)  =  ( ( rec ( ( y  e.  _V  |->  U. y
) ,  A )  |`  om ) `  B
) )
1716unieqd 4208 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  om )  ->  U. ( ( U `
 A ) `  B )  =  U. ( ( rec (
( y  e.  _V  |->  U. y ) ,  A
)  |`  om ) `  B ) )
1810, 14, 173eqtr4d 2495 . . 3  |-  ( ( A  e.  _V  /\  B  e.  om )  ->  ( ( U `  A ) `  suc  B )  =  U. (
( U `  A
) `  B )
)
19 uni0 4225 . . . . 5  |-  U. (/)  =  (/)
2019eqcomi 2460 . . . 4  |-  (/)  =  U. (/)
2111itunifn 8847 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( U `  A )  Fn  om )
22 fndm 5675 . . . . . . . . . 10  |-  ( ( U `  A )  Fn  om  ->  dom  ( U `  A )  =  om )
2321, 22syl 17 . . . . . . . . 9  |-  ( A  e.  _V  ->  dom  ( U `  A )  =  om )
2423eleq2d 2514 . . . . . . . 8  |-  ( A  e.  _V  ->  ( suc  B  e.  dom  ( U `  A )  <->  suc 
B  e.  om )
)
25 peano2b 6708 . . . . . . . 8  |-  ( B  e.  om  <->  suc  B  e. 
om )
2624, 25syl6bbr 267 . . . . . . 7  |-  ( A  e.  _V  ->  ( suc  B  e.  dom  ( U `  A )  <->  B  e.  om ) )
2726notbid 296 . . . . . 6  |-  ( A  e.  _V  ->  ( -.  suc  B  e.  dom  ( U `  A )  <->  -.  B  e.  om ) )
2827biimpar 488 . . . . 5  |-  ( ( A  e.  _V  /\  -.  B  e.  om )  ->  -.  suc  B  e. 
dom  ( U `  A ) )
29 ndmfv 5889 . . . . 5  |-  ( -. 
suc  B  e.  dom  ( U `  A )  ->  ( ( U `
 A ) `  suc  B )  =  (/) )
3028, 29syl 17 . . . 4  |-  ( ( A  e.  _V  /\  -.  B  e.  om )  ->  ( ( U `
 A ) `  suc  B )  =  (/) )
3123eleq2d 2514 . . . . . . . 8  |-  ( A  e.  _V  ->  ( B  e.  dom  ( U `
 A )  <->  B  e.  om ) )
3231notbid 296 . . . . . . 7  |-  ( A  e.  _V  ->  ( -.  B  e.  dom  ( U `  A )  <->  -.  B  e.  om ) )
3332biimpar 488 . . . . . 6  |-  ( ( A  e.  _V  /\  -.  B  e.  om )  ->  -.  B  e.  dom  ( U `  A
) )
34 ndmfv 5889 . . . . . 6  |-  ( -.  B  e.  dom  ( U `  A )  ->  ( ( U `  A ) `  B
)  =  (/) )
3533, 34syl 17 . . . . 5  |-  ( ( A  e.  _V  /\  -.  B  e.  om )  ->  ( ( U `
 A ) `  B )  =  (/) )
3635unieqd 4208 . . . 4  |-  ( ( A  e.  _V  /\  -.  B  e.  om )  ->  U. ( ( U `
 A ) `  B )  =  U. (/) )
3720, 30, 363eqtr4a 2511 . . 3  |-  ( ( A  e.  _V  /\  -.  B  e.  om )  ->  ( ( U `
 A ) `  suc  B )  =  U. ( ( U `  A ) `  B
) )
3818, 37pm2.61dan 800 . 2  |-  ( A  e.  _V  ->  (
( U `  A
) `  suc  B )  =  U. ( ( U `  A ) `
 B ) )
39 0fv 5898 . . . . 5  |-  ( (/) `  B )  =  (/)
4039unieqi 4207 . . . 4  |-  U. ( (/) `  B )  =  U. (/)
41 0fv 5898 . . . 4  |-  ( (/) ` 
suc  B )  =  (/)
4219, 40, 413eqtr4ri 2484 . . 3  |-  ( (/) ` 
suc  B )  = 
U. ( (/) `  B
)
43 fvprc 5859 . . . 4  |-  ( -.  A  e.  _V  ->  ( U `  A )  =  (/) )
4443fveq1d 5867 . . 3  |-  ( -.  A  e.  _V  ->  ( ( U `  A
) `  suc  B )  =  ( (/) `  suc  B ) )
4543fveq1d 5867 . . . 4  |-  ( -.  A  e.  _V  ->  ( ( U `  A
) `  B )  =  ( (/) `  B
) )
4645unieqd 4208 . . 3  |-  ( -.  A  e.  _V  ->  U. ( ( U `  A ) `  B
)  =  U. ( (/) `  B ) )
4742, 44, 463eqtr4a 2511 . 2  |-  ( -.  A  e.  _V  ->  ( ( U `  A
) `  suc  B )  =  U. ( ( U `  A ) `
 B ) )
4838, 47pm2.61i 168 1  |-  ( ( U `  A ) `
 suc  B )  =  U. ( ( U `
 A ) `  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 371    = wceq 1444    e. wcel 1887   _Vcvv 3045   (/)c0 3731   U.cuni 4198    |-> cmpt 4461   dom cdm 4834    |` cres 4836   suc csuc 5425    Fn wfn 5577   ` cfv 5582   omcom 6692   reccrdg 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-om 6693  df-wrecs 7028  df-recs 7090  df-rdg 7128
This theorem is referenced by:  itunitc1  8850  itunitc  8851  ituniiun  8852
  Copyright terms: Public domain W3C validator