Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ituniiun Structured version   Visualization version   GIF version

Theorem ituniiun 9127
 Description: Unwrap an iterated union from the "other end". (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
ituniiun (𝐴𝑉 → ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑎   𝑥,𝐵,𝑦,𝑎   𝑈,𝑎
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦,𝑎)

Proof of Theorem ituniiun
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6103 . . . 4 (𝑏 = 𝐴 → (𝑈𝑏) = (𝑈𝐴))
21fveq1d 6105 . . 3 (𝑏 = 𝐴 → ((𝑈𝑏)‘suc 𝐵) = ((𝑈𝐴)‘suc 𝐵))
3 iuneq1 4470 . . 3 (𝑏 = 𝐴 𝑎𝑏 ((𝑈𝑎)‘𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
42, 3eqeq12d 2625 . 2 (𝑏 = 𝐴 → (((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵) ↔ ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵)))
5 suceq 5707 . . . . . 6 (𝑑 = ∅ → suc 𝑑 = suc ∅)
65fveq2d 6107 . . . . 5 (𝑑 = ∅ → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc ∅))
7 fveq2 6103 . . . . . 6 (𝑑 = ∅ → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘∅))
87iuneq2d 4483 . . . . 5 (𝑑 = ∅ → 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘∅))
96, 8eqeq12d 2625 . . . 4 (𝑑 = ∅ → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc ∅) = 𝑎𝑏 ((𝑈𝑎)‘∅)))
10 suceq 5707 . . . . . 6 (𝑑 = 𝑐 → suc 𝑑 = suc 𝑐)
1110fveq2d 6107 . . . . 5 (𝑑 = 𝑐 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc 𝑐))
12 fveq2 6103 . . . . . 6 (𝑑 = 𝑐 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘𝑐))
1312iuneq2d 4483 . . . . 5 (𝑑 = 𝑐 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑐))
1411, 13eqeq12d 2625 . . . 4 (𝑑 = 𝑐 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)))
15 suceq 5707 . . . . . 6 (𝑑 = suc 𝑐 → suc 𝑑 = suc suc 𝑐)
1615fveq2d 6107 . . . . 5 (𝑑 = suc 𝑐 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc suc 𝑐))
17 fveq2 6103 . . . . . 6 (𝑑 = suc 𝑐 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘suc 𝑐))
1817iuneq2d 4483 . . . . 5 (𝑑 = suc 𝑐 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
1916, 18eqeq12d 2625 . . . 4 (𝑑 = suc 𝑐 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)))
20 suceq 5707 . . . . . 6 (𝑑 = 𝐵 → suc 𝑑 = suc 𝐵)
2120fveq2d 6107 . . . . 5 (𝑑 = 𝐵 → ((𝑈𝑏)‘suc 𝑑) = ((𝑈𝑏)‘suc 𝐵))
22 fveq2 6103 . . . . . 6 (𝑑 = 𝐵 → ((𝑈𝑎)‘𝑑) = ((𝑈𝑎)‘𝐵))
2322iuneq2d 4483 . . . . 5 (𝑑 = 𝐵 𝑎𝑏 ((𝑈𝑎)‘𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
2421, 23eqeq12d 2625 . . . 4 (𝑑 = 𝐵 → (((𝑈𝑏)‘suc 𝑑) = 𝑎𝑏 ((𝑈𝑎)‘𝑑) ↔ ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵)))
25 uniiun 4509 . . . . 5 𝑏 = 𝑎𝑏 𝑎
26 ituni.u . . . . . . 7 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
2726itunisuc 9124 . . . . . 6 ((𝑈𝑏)‘suc ∅) = ((𝑈𝑏)‘∅)
28 vex 3176 . . . . . . . 8 𝑏 ∈ V
2926ituni0 9123 . . . . . . . 8 (𝑏 ∈ V → ((𝑈𝑏)‘∅) = 𝑏)
3028, 29ax-mp 5 . . . . . . 7 ((𝑈𝑏)‘∅) = 𝑏
3130unieqi 4381 . . . . . 6 ((𝑈𝑏)‘∅) = 𝑏
3227, 31eqtri 2632 . . . . 5 ((𝑈𝑏)‘suc ∅) = 𝑏
3326ituni0 9123 . . . . . 6 (𝑎𝑏 → ((𝑈𝑎)‘∅) = 𝑎)
3433iuneq2i 4475 . . . . 5 𝑎𝑏 ((𝑈𝑎)‘∅) = 𝑎𝑏 𝑎
3525, 32, 343eqtr4i 2642 . . . 4 ((𝑈𝑏)‘suc ∅) = 𝑎𝑏 ((𝑈𝑎)‘∅)
3626itunisuc 9124 . . . . . 6 ((𝑈𝑏)‘suc suc 𝑐) = ((𝑈𝑏)‘suc 𝑐)
37 unieq 4380 . . . . . . 7 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐))
3826itunisuc 9124 . . . . . . . . . 10 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
3938a1i 11 . . . . . . . . 9 (𝑎𝑏 → ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐))
4039iuneq2i 4475 . . . . . . . 8 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)
41 iuncom4 4464 . . . . . . . 8 𝑎𝑏 ((𝑈𝑎)‘𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐)
4240, 41eqtr2i 2633 . . . . . . 7 𝑎𝑏 ((𝑈𝑎)‘𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)
4337, 42syl6eq 2660 . . . . . 6 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
4436, 43syl5eq 2656 . . . . 5 (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐))
4544a1i 11 . . . 4 (𝑐 ∈ ω → (((𝑈𝑏)‘suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘𝑐) → ((𝑈𝑏)‘suc suc 𝑐) = 𝑎𝑏 ((𝑈𝑎)‘suc 𝑐)))
469, 14, 19, 24, 35, 45finds 6984 . . 3 (𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
47 iun0 4512 . . . . 5 𝑎𝑏 ∅ = ∅
4847eqcomi 2619 . . . 4 ∅ = 𝑎𝑏
49 peano2b 6973 . . . . . 6 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
5026itunifn 9122 . . . . . . . 8 (𝑏 ∈ V → (𝑈𝑏) Fn ω)
51 fndm 5904 . . . . . . . 8 ((𝑈𝑏) Fn ω → dom (𝑈𝑏) = ω)
5228, 50, 51mp2b 10 . . . . . . 7 dom (𝑈𝑏) = ω
5352eleq2i 2680 . . . . . 6 (suc 𝐵 ∈ dom (𝑈𝑏) ↔ suc 𝐵 ∈ ω)
5449, 53bitr4i 266 . . . . 5 (𝐵 ∈ ω ↔ suc 𝐵 ∈ dom (𝑈𝑏))
55 ndmfv 6128 . . . . 5 (¬ suc 𝐵 ∈ dom (𝑈𝑏) → ((𝑈𝑏)‘suc 𝐵) = ∅)
5654, 55sylnbi 319 . . . 4 𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = ∅)
57 vex 3176 . . . . . . . 8 𝑎 ∈ V
5826itunifn 9122 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
59 fndm 5904 . . . . . . . 8 ((𝑈𝑎) Fn ω → dom (𝑈𝑎) = ω)
6057, 58, 59mp2b 10 . . . . . . 7 dom (𝑈𝑎) = ω
6160eleq2i 2680 . . . . . 6 (𝐵 ∈ dom (𝑈𝑎) ↔ 𝐵 ∈ ω)
62 ndmfv 6128 . . . . . 6 𝐵 ∈ dom (𝑈𝑎) → ((𝑈𝑎)‘𝐵) = ∅)
6361, 62sylnbir 320 . . . . 5 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) = ∅)
6463iuneq2d 4483 . . . 4 𝐵 ∈ ω → 𝑎𝑏 ((𝑈𝑎)‘𝐵) = 𝑎𝑏 ∅)
6548, 56, 643eqtr4a 2670 . . 3 𝐵 ∈ ω → ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵))
6646, 65pm2.61i 175 . 2 ((𝑈𝑏)‘suc 𝐵) = 𝑎𝑏 ((𝑈𝑎)‘𝐵)
674, 66vtoclg 3239 1 (𝐴𝑉 → ((𝑈𝐴)‘suc 𝐵) = 𝑎𝐴 ((𝑈𝑎)‘𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ∅c0 3874  ∪ cuni 4372  ∪ ciun 4455   ↦ cmpt 4643  dom cdm 5038   ↾ cres 5040  suc csuc 5642   Fn wfn 5799  ‘cfv 5804  ωcom 6957  reccrdg 7392 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393 This theorem is referenced by:  hsmexlem4  9134
 Copyright terms: Public domain W3C validator