MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iuncom4 Structured version   Visualization version   GIF version

Theorem iuncom4 4464
Description: Commutation of union with indexed union. (Contributed by Mario Carneiro, 18-Jan-2014.)
Assertion
Ref Expression
iuncom4 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵

Proof of Theorem iuncom4
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 2902 . . . . . . 7 (∃𝑧𝐵 𝑦𝑧 ↔ ∃𝑧(𝑧𝐵𝑦𝑧))
21rexbii 3023 . . . . . 6 (∃𝑥𝐴𝑧𝐵 𝑦𝑧 ↔ ∃𝑥𝐴𝑧(𝑧𝐵𝑦𝑧))
3 rexcom4 3198 . . . . . 6 (∃𝑥𝐴𝑧(𝑧𝐵𝑦𝑧) ↔ ∃𝑧𝑥𝐴 (𝑧𝐵𝑦𝑧))
42, 3bitri 263 . . . . 5 (∃𝑥𝐴𝑧𝐵 𝑦𝑧 ↔ ∃𝑧𝑥𝐴 (𝑧𝐵𝑦𝑧))
5 r19.41v 3070 . . . . . 6 (∃𝑥𝐴 (𝑧𝐵𝑦𝑧) ↔ (∃𝑥𝐴 𝑧𝐵𝑦𝑧))
65exbii 1764 . . . . 5 (∃𝑧𝑥𝐴 (𝑧𝐵𝑦𝑧) ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
74, 6bitri 263 . . . 4 (∃𝑥𝐴𝑧𝐵 𝑦𝑧 ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
8 eluni2 4376 . . . . 5 (𝑦 𝐵 ↔ ∃𝑧𝐵 𝑦𝑧)
98rexbii 3023 . . . 4 (∃𝑥𝐴 𝑦 𝐵 ↔ ∃𝑥𝐴𝑧𝐵 𝑦𝑧)
10 df-rex 2902 . . . . 5 (∃𝑧 𝑥𝐴 𝐵𝑦𝑧 ↔ ∃𝑧(𝑧 𝑥𝐴 𝐵𝑦𝑧))
11 eliun 4460 . . . . . . 7 (𝑧 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑧𝐵)
1211anbi1i 727 . . . . . 6 ((𝑧 𝑥𝐴 𝐵𝑦𝑧) ↔ (∃𝑥𝐴 𝑧𝐵𝑦𝑧))
1312exbii 1764 . . . . 5 (∃𝑧(𝑧 𝑥𝐴 𝐵𝑦𝑧) ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
1410, 13bitri 263 . . . 4 (∃𝑧 𝑥𝐴 𝐵𝑦𝑧 ↔ ∃𝑧(∃𝑥𝐴 𝑧𝐵𝑦𝑧))
157, 9, 143bitr4i 291 . . 3 (∃𝑥𝐴 𝑦 𝐵 ↔ ∃𝑧 𝑥𝐴 𝐵𝑦𝑧)
16 eliun 4460 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦 𝐵)
17 eluni2 4376 . . 3 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑧 𝑥𝐴 𝐵𝑦𝑧)
1815, 16, 173bitr4i 291 . 2 (𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵)
1918eqriv 2607 1 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wex 1695  wcel 1977  wrex 2897   cuni 4372   ciun 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-uni 4373  df-iun 4457
This theorem is referenced by:  ituniiun  9127  tgidm  20595  txcmplem2  21255
  Copyright terms: Public domain W3C validator