Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs1i Structured version   Visualization version   GIF version

Theorem isacs1i 16141
 Description: A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
isacs1i ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋))
Distinct variable groups:   𝐹,𝑠   𝑋,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem isacs1i
Dummy variables 𝑎 𝑡 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3650 . . . 4 {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ⊆ 𝒫 𝑋
21a1i 11 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ⊆ 𝒫 𝑋)
3 inss1 3795 . . . . . 6 (𝑋 𝑡) ⊆ 𝑋
4 elpw2g 4754 . . . . . 6 (𝑋𝑉 → ((𝑋 𝑡) ∈ 𝒫 𝑋 ↔ (𝑋 𝑡) ⊆ 𝑋))
53, 4mpbiri 247 . . . . 5 (𝑋𝑉 → (𝑋 𝑡) ∈ 𝒫 𝑋)
65ad2antrr 758 . . . 4 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 𝑡) ∈ 𝒫 𝑋)
7 imassrn 5396 . . . . . . . . 9 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ ran 𝐹
8 frn 5966 . . . . . . . . . 10 (𝐹:𝒫 𝑋⟶𝒫 𝑋 → ran 𝐹 ⊆ 𝒫 𝑋)
98adantl 481 . . . . . . . . 9 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → ran 𝐹 ⊆ 𝒫 𝑋)
107, 9syl5ss 3579 . . . . . . . 8 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝒫 𝑋)
1110unissd 4398 . . . . . . 7 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝒫 𝑋)
12 unipw 4845 . . . . . . 7 𝒫 𝑋 = 𝑋
1311, 12syl6sseq 3614 . . . . . 6 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑋)
1413adantr 480 . . . . 5 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑋)
15 inss2 3796 . . . . . . . . . . . . . 14 (𝑋 𝑡) ⊆ 𝑡
16 intss1 4427 . . . . . . . . . . . . . 14 (𝑎𝑡 𝑡𝑎)
1715, 16syl5ss 3579 . . . . . . . . . . . . 13 (𝑎𝑡 → (𝑋 𝑡) ⊆ 𝑎)
1817adantl 481 . . . . . . . . . . . 12 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝑋 𝑡) ⊆ 𝑎)
19 sspwb 4844 . . . . . . . . . . . 12 ((𝑋 𝑡) ⊆ 𝑎 ↔ 𝒫 (𝑋 𝑡) ⊆ 𝒫 𝑎)
2018, 19sylib 207 . . . . . . . . . . 11 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → 𝒫 (𝑋 𝑡) ⊆ 𝒫 𝑎)
21 ssrin 3800 . . . . . . . . . . 11 (𝒫 (𝑋 𝑡) ⊆ 𝒫 𝑎 → (𝒫 (𝑋 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin))
2220, 21syl 17 . . . . . . . . . 10 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝒫 (𝑋 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin))
23 imass2 5420 . . . . . . . . . 10 ((𝒫 (𝑋 𝑡) ∩ Fin) ⊆ (𝒫 𝑎 ∩ Fin) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
2422, 23syl 17 . . . . . . . . 9 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
2524unissd 4398 . . . . . . . 8 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝐹 “ (𝒫 𝑎 ∩ Fin)))
26 ssel2 3563 . . . . . . . . . 10 ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎𝑡) → 𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠})
27 pweq 4111 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑎 → 𝒫 𝑠 = 𝒫 𝑎)
2827ineq1d 3775 . . . . . . . . . . . . . . 15 (𝑠 = 𝑎 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑎 ∩ Fin))
2928imaeq2d 5385 . . . . . . . . . . . . . 14 (𝑠 = 𝑎 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑎 ∩ Fin)))
3029unieqd 4382 . . . . . . . . . . . . 13 (𝑠 = 𝑎 (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑎 ∩ Fin)))
31 id 22 . . . . . . . . . . . . 13 (𝑠 = 𝑎𝑠 = 𝑎)
3230, 31sseq12d 3597 . . . . . . . . . . . 12 (𝑠 = 𝑎 → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎))
3332elrab 3331 . . . . . . . . . . 11 (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑎 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎))
3433simprbi 479 . . . . . . . . . 10 (𝑎 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
3526, 34syl 17 . . . . . . . . 9 ((𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∧ 𝑎𝑡) → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
3635adantll 746 . . . . . . . 8 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 𝑎 ∩ Fin)) ⊆ 𝑎)
3725, 36sstrd 3578 . . . . . . 7 ((((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) ∧ 𝑎𝑡) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
3837ralrimiva 2949 . . . . . 6 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → ∀𝑎𝑡 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
39 ssint 4428 . . . . . 6 ( (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑡 ↔ ∀𝑎𝑡 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑎)
4038, 39sylibr 223 . . . . 5 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ 𝑡)
4114, 40ssind 3799 . . . 4 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝑋 𝑡))
42 pweq 4111 . . . . . . . . 9 (𝑠 = (𝑋 𝑡) → 𝒫 𝑠 = 𝒫 (𝑋 𝑡))
4342ineq1d 3775 . . . . . . . 8 (𝑠 = (𝑋 𝑡) → (𝒫 𝑠 ∩ Fin) = (𝒫 (𝑋 𝑡) ∩ Fin))
4443imaeq2d 5385 . . . . . . 7 (𝑠 = (𝑋 𝑡) → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)))
4544unieqd 4382 . . . . . 6 (𝑠 = (𝑋 𝑡) → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)))
46 id 22 . . . . . 6 (𝑠 = (𝑋 𝑡) → 𝑠 = (𝑋 𝑡))
4745, 46sseq12d 3597 . . . . 5 (𝑠 = (𝑋 𝑡) → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝑋 𝑡)))
4847elrab 3331 . . . 4 ((𝑋 𝑡) ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ ((𝑋 𝑡) ∈ 𝒫 𝑋 (𝐹 “ (𝒫 (𝑋 𝑡) ∩ Fin)) ⊆ (𝑋 𝑡)))
496, 41, 48sylanbrc 695 . . 3 (((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) ∧ 𝑡 ⊆ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠}) → (𝑋 𝑡) ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠})
502, 49ismred2 16086 . 2 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (Moore‘𝑋))
51 fssxp 5973 . . . 4 (𝐹:𝒫 𝑋⟶𝒫 𝑋𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋))
52 pwexg 4776 . . . . 5 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
53 xpexg 6858 . . . . 5 ((𝒫 𝑋 ∈ V ∧ 𝒫 𝑋 ∈ V) → (𝒫 𝑋 × 𝒫 𝑋) ∈ V)
5452, 52, 53syl2anc 691 . . . 4 (𝑋𝑉 → (𝒫 𝑋 × 𝒫 𝑋) ∈ V)
55 ssexg 4732 . . . 4 ((𝐹 ⊆ (𝒫 𝑋 × 𝒫 𝑋) ∧ (𝒫 𝑋 × 𝒫 𝑋) ∈ V) → 𝐹 ∈ V)
5651, 54, 55syl2anr 494 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹 ∈ V)
57 simpr 476 . . . 4 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → 𝐹:𝒫 𝑋⟶𝒫 𝑋)
58 pweq 4111 . . . . . . . . . 10 (𝑠 = 𝑡 → 𝒫 𝑠 = 𝒫 𝑡)
5958ineq1d 3775 . . . . . . . . 9 (𝑠 = 𝑡 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑡 ∩ Fin))
6059imaeq2d 5385 . . . . . . . 8 (𝑠 = 𝑡 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
6160unieqd 4382 . . . . . . 7 (𝑠 = 𝑡 (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
62 id 22 . . . . . . 7 (𝑠 = 𝑡𝑠 = 𝑡)
6361, 62sseq12d 3597 . . . . . 6 (𝑠 = 𝑡 → ( (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠 (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6463elrab3 3332 . . . . 5 (𝑡 ∈ 𝒫 𝑋 → (𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
6564rgen 2906 . . . 4 𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)
6657, 65jctir 559 . . 3 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
67 feq1 5939 . . . . 5 (𝑓 = 𝐹 → (𝑓:𝒫 𝑋⟶𝒫 𝑋𝐹:𝒫 𝑋⟶𝒫 𝑋))
68 imaeq1 5380 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓 “ (𝒫 𝑡 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
6968unieqd 4382 . . . . . . . 8 (𝑓 = 𝐹 (𝑓 “ (𝒫 𝑡 ∩ Fin)) = (𝐹 “ (𝒫 𝑡 ∩ Fin)))
7069sseq1d 3595 . . . . . . 7 (𝑓 = 𝐹 → ( (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡 (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))
7170bibi2d 331 . . . . . 6 (𝑓 = 𝐹 → ((𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ (𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
7271ralbidv 2969 . . . . 5 (𝑓 = 𝐹 → (∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡) ↔ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
7367, 72anbi12d 743 . . . 4 (𝑓 = 𝐹 → ((𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) ↔ (𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
7473spcegv 3267 . . 3 (𝐹 ∈ V → ((𝐹:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝐹 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
7556, 66, 74sylc 63 . 2 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡)))
76 isacs 16135 . 2 ({𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋) ↔ ({𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (Moore‘𝑋) ∧ ∃𝑓(𝑓:𝒫 𝑋⟶𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝑋(𝑡 ∈ {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ↔ (𝑓 “ (𝒫 𝑡 ∩ Fin)) ⊆ 𝑡))))
7750, 75, 76sylanbrc 695 1 ((𝑋𝑉𝐹:𝒫 𝑋⟶𝒫 𝑋) → {𝑠 ∈ 𝒫 𝑋 (𝐹 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠} ∈ (ACS‘𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∀wral 2896  {crab 2900  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  ∪ cuni 4372  ∩ cint 4410   × cxp 5036  ran crn 5039   “ cima 5041  ⟶wf 5800  ‘cfv 5804  Fincfn 7841  Moorecmre 16065  ACScacs 16068 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-mre 16069  df-acs 16072 This theorem is referenced by:  acsfn  16143
 Copyright terms: Public domain W3C validator