MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs1i Structured version   Visualization version   Unicode version

Theorem isacs1i 15563
Description: A closure system determined by a function is a closure system and algebraic. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
isacs1i  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  e.  (ACS `  X )
)
Distinct variable groups:    F, s    X, s
Allowed substitution hint:    V( s)

Proof of Theorem isacs1i
Dummy variables  a 
t  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3514 . . . 4  |-  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  C_ 
~P X
21a1i 11 . . 3  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  C_ 
~P X )
3 inss1 3652 . . . . . 6  |-  ( X  i^i  |^| t )  C_  X
4 elpw2g 4566 . . . . . 6  |-  ( X  e.  V  ->  (
( X  i^i  |^| t )  e.  ~P X 
<->  ( X  i^i  |^| t )  C_  X
) )
53, 4mpbiri 237 . . . . 5  |-  ( X  e.  V  ->  ( X  i^i  |^| t )  e. 
~P X )
65ad2antrr 732 . . . 4  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  ( X  i^i  |^| t )  e. 
~P X )
7 imassrn 5179 . . . . . . . . 9  |-  ( F
" ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ran  F
8 frn 5735 . . . . . . . . . 10  |-  ( F : ~P X --> ~P X  ->  ran  F  C_  ~P X )
98adantl 468 . . . . . . . . 9  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  ran  F  C_  ~P X )
107, 9syl5ss 3443 . . . . . . . 8  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ~P X )
1110unissd 4222 . . . . . . 7  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  U. ~P X )
12 unipw 4650 . . . . . . 7  |-  U. ~P X  =  X
1311, 12syl6sseq 3478 . . . . . 6  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  X )
1413adantr 467 . . . . 5  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  X )
15 inss2 3653 . . . . . . . . . . . . . 14  |-  ( X  i^i  |^| t )  C_  |^| t
16 intss1 4249 . . . . . . . . . . . . . 14  |-  ( a  e.  t  ->  |^| t  C_  a )
1715, 16syl5ss 3443 . . . . . . . . . . . . 13  |-  ( a  e.  t  ->  ( X  i^i  |^| t )  C_  a )
1817adantl 468 . . . . . . . . . . . 12  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  ( X  i^i  |^| t )  C_  a )
19 sspwb 4649 . . . . . . . . . . . 12  |-  ( ( X  i^i  |^| t
)  C_  a  <->  ~P ( X  i^i  |^| t )  C_  ~P a )
2018, 19sylib 200 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  ~P ( X  i^i  |^| t
)  C_  ~P a
)
21 ssrin 3657 . . . . . . . . . . 11  |-  ( ~P ( X  i^i  |^| t )  C_  ~P a  ->  ( ~P ( X  i^i  |^| t )  i^i 
Fin )  C_  ( ~P a  i^i  Fin )
)
2220, 21syl 17 . . . . . . . . . 10  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  ( ~P ( X  i^i  |^| t )  i^i  Fin )  C_  ( ~P a  i^i  Fin ) )
23 imass2 5204 . . . . . . . . . 10  |-  ( ( ~P ( X  i^i  |^| t )  i^i  Fin )  C_  ( ~P a  i^i  Fin )  ->  ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ( F " ( ~P a  i^i  Fin )
) )
2422, 23syl 17 . . . . . . . . 9  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ( F " ( ~P a  i^i  Fin )
) )
2524unissd 4222 . . . . . . . 8  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  U. ( F " ( ~P a  i^i  Fin )
) )
26 ssel2 3427 . . . . . . . . . 10  |-  ( ( t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  /\  a  e.  t
)  ->  a  e.  { s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s } )
27 pweq 3954 . . . . . . . . . . . . . . . 16  |-  ( s  =  a  ->  ~P s  =  ~P a
)
2827ineq1d 3633 . . . . . . . . . . . . . . 15  |-  ( s  =  a  ->  ( ~P s  i^i  Fin )  =  ( ~P a  i^i  Fin ) )
2928imaeq2d 5168 . . . . . . . . . . . . . 14  |-  ( s  =  a  ->  ( F " ( ~P s  i^i  Fin ) )  =  ( F " ( ~P a  i^i  Fin )
) )
3029unieqd 4208 . . . . . . . . . . . . 13  |-  ( s  =  a  ->  U. ( F " ( ~P s  i^i  Fin ) )  = 
U. ( F "
( ~P a  i^i 
Fin ) ) )
31 id 22 . . . . . . . . . . . . 13  |-  ( s  =  a  ->  s  =  a )
3230, 31sseq12d 3461 . . . . . . . . . . . 12  |-  ( s  =  a  ->  ( U. ( F " ( ~P s  i^i  Fin )
)  C_  s  <->  U. ( F " ( ~P a  i^i  Fin ) )  C_  a ) )
3332elrab 3196 . . . . . . . . . . 11  |-  ( a  e.  { s  e. 
~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  <->  ( a  e.  ~P X  /\  U. ( F "
( ~P a  i^i 
Fin ) )  C_  a ) )
3433simprbi 466 . . . . . . . . . 10  |-  ( a  e.  { s  e. 
~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  ->  U. ( F "
( ~P a  i^i 
Fin ) )  C_  a )
3526, 34syl 17 . . . . . . . . 9  |-  ( ( t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  /\  a  e.  t
)  ->  U. ( F " ( ~P a  i^i  Fin ) )  C_  a )
3635adantll 720 . . . . . . . 8  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  U. ( F " ( ~P a  i^i  Fin ) )  C_  a )
3725, 36sstrd 3442 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }
)  /\  a  e.  t )  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  a )
3837ralrimiva 2802 . . . . . 6  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  A. a  e.  t  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  a )
39 ssint 4250 . . . . . 6  |-  ( U. ( F " ( ~P ( X  i^i  |^| t )  i^i  Fin ) )  C_  |^| t  <->  A. a  e.  t  U. ( F " ( ~P ( X  i^i  |^| t )  i^i  Fin ) )  C_  a
)
4038, 39sylibr 216 . . . . 5  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  |^| t )
4114, 40ssind 3656 . . . 4  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ( X  i^i  |^| t
) )
42 pweq 3954 . . . . . . . . 9  |-  ( s  =  ( X  i^i  |^| t )  ->  ~P s  =  ~P ( X  i^i  |^| t ) )
4342ineq1d 3633 . . . . . . . 8  |-  ( s  =  ( X  i^i  |^| t )  ->  ( ~P s  i^i  Fin )  =  ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )
4443imaeq2d 5168 . . . . . . 7  |-  ( s  =  ( X  i^i  |^| t )  ->  ( F " ( ~P s  i^i  Fin ) )  =  ( F " ( ~P ( X  i^i  |^| t )  i^i  Fin ) ) )
4544unieqd 4208 . . . . . 6  |-  ( s  =  ( X  i^i  |^| t )  ->  U. ( F " ( ~P s  i^i  Fin ) )  = 
U. ( F "
( ~P ( X  i^i  |^| t )  i^i 
Fin ) ) )
46 id 22 . . . . . 6  |-  ( s  =  ( X  i^i  |^| t )  ->  s  =  ( X  i^i  |^| t ) )
4745, 46sseq12d 3461 . . . . 5  |-  ( s  =  ( X  i^i  |^| t )  ->  ( U. ( F " ( ~P s  i^i  Fin )
)  C_  s  <->  U. ( F " ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ( X  i^i  |^| t
) ) )
4847elrab 3196 . . . 4  |-  ( ( X  i^i  |^| t
)  e.  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  <->  ( ( X  i^i  |^| t )  e.  ~P X  /\  U. ( F
" ( ~P ( X  i^i  |^| t )  i^i 
Fin ) )  C_  ( X  i^i  |^| t
) ) )
496, 41, 48sylanbrc 670 . . 3  |-  ( ( ( X  e.  V  /\  F : ~P X --> ~P X )  /\  t  C_ 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )  ->  ( X  i^i  |^| t )  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s } )
502, 49ismred2 15509 . 2  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  e.  (Moore `  X )
)
51 fssxp 5741 . . . 4  |-  ( F : ~P X --> ~P X  ->  F  C_  ( ~P X  X.  ~P X ) )
52 pwexg 4587 . . . . 5  |-  ( X  e.  V  ->  ~P X  e.  _V )
53 xpexg 6593 . . . . 5  |-  ( ( ~P X  e.  _V  /\ 
~P X  e.  _V )  ->  ( ~P X  X.  ~P X )  e. 
_V )
5452, 52, 53syl2anc 667 . . . 4  |-  ( X  e.  V  ->  ( ~P X  X.  ~P X
)  e.  _V )
55 ssexg 4549 . . . 4  |-  ( ( F  C_  ( ~P X  X.  ~P X )  /\  ( ~P X  X.  ~P X )  e. 
_V )  ->  F  e.  _V )
5651, 54, 55syl2anr 481 . . 3  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  F  e.  _V )
57 simpr 463 . . . 4  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  F : ~P X --> ~P X )
58 pweq 3954 . . . . . . . . . 10  |-  ( s  =  t  ->  ~P s  =  ~P t
)
5958ineq1d 3633 . . . . . . . . 9  |-  ( s  =  t  ->  ( ~P s  i^i  Fin )  =  ( ~P t  i^i  Fin ) )
6059imaeq2d 5168 . . . . . . . 8  |-  ( s  =  t  ->  ( F " ( ~P s  i^i  Fin ) )  =  ( F " ( ~P t  i^i  Fin )
) )
6160unieqd 4208 . . . . . . 7  |-  ( s  =  t  ->  U. ( F " ( ~P s  i^i  Fin ) )  = 
U. ( F "
( ~P t  i^i 
Fin ) ) )
62 id 22 . . . . . . 7  |-  ( s  =  t  ->  s  =  t )
6361, 62sseq12d 3461 . . . . . 6  |-  ( s  =  t  ->  ( U. ( F " ( ~P s  i^i  Fin )
)  C_  s  <->  U. ( F " ( ~P t  i^i  Fin ) )  C_  t ) )
6463elrab3 3197 . . . . 5  |-  ( t  e.  ~P X  -> 
( t  e.  {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  <->  U. ( F "
( ~P t  i^i 
Fin ) )  C_  t ) )
6564rgen 2747 . . . 4  |-  A. t  e.  ~P  X ( t  e.  { s  e. 
~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  <->  U. ( F " ( ~P t  i^i  Fin )
)  C_  t )
6657, 65jctir 541 . . 3  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  ( F : ~P X --> ~P X  /\  A. t  e.  ~P  X ( t  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( F "
( ~P t  i^i 
Fin ) )  C_  t ) ) )
67 feq1 5710 . . . . 5  |-  ( f  =  F  ->  (
f : ~P X --> ~P X  <->  F : ~P X --> ~P X ) )
68 imaeq1 5163 . . . . . . . . 9  |-  ( f  =  F  ->  (
f " ( ~P t  i^i  Fin )
)  =  ( F
" ( ~P t  i^i  Fin ) ) )
6968unieqd 4208 . . . . . . . 8  |-  ( f  =  F  ->  U. (
f " ( ~P t  i^i  Fin )
)  =  U. ( F " ( ~P t  i^i  Fin ) ) )
7069sseq1d 3459 . . . . . . 7  |-  ( f  =  F  ->  ( U. ( f " ( ~P t  i^i  Fin )
)  C_  t  <->  U. ( F " ( ~P t  i^i  Fin ) )  C_  t ) )
7170bibi2d 320 . . . . . 6  |-  ( f  =  F  ->  (
( t  e.  {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t )  <->  ( t  e.  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( F "
( ~P t  i^i 
Fin ) )  C_  t ) ) )
7271ralbidv 2827 . . . . 5  |-  ( f  =  F  ->  ( A. t  e.  ~P  X ( t  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t )  <->  A. t  e.  ~P  X ( t  e.  { s  e. 
~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  <->  U. ( F " ( ~P t  i^i  Fin )
)  C_  t )
) )
7367, 72anbi12d 717 . . . 4  |-  ( f  =  F  ->  (
( f : ~P X
--> ~P X  /\  A. t  e.  ~P  X
( t  e.  {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t ) )  <->  ( F : ~P X --> ~P X  /\  A. t  e.  ~P  X ( t  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( F "
( ~P t  i^i 
Fin ) )  C_  t ) ) ) )
7473spcegv 3135 . . 3  |-  ( F  e.  _V  ->  (
( F : ~P X
--> ~P X  /\  A. t  e.  ~P  X
( t  e.  {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  <->  U. ( F "
( ~P t  i^i 
Fin ) )  C_  t ) )  ->  E. f ( f : ~P X --> ~P X  /\  A. t  e.  ~P  X ( t  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t ) ) ) )
7556, 66, 74sylc 62 . 2  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  E. f
( f : ~P X
--> ~P X  /\  A. t  e.  ~P  X
( t  e.  {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t ) ) )
76 isacs 15557 . 2  |-  ( { s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  e.  (ACS `  X )  <->  ( {
s  e.  ~P X  |  U. ( F "
( ~P s  i^i 
Fin ) )  C_  s }  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. t  e.  ~P  X ( t  e. 
{ s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin ) )  C_  s }  <->  U. ( f "
( ~P t  i^i 
Fin ) )  C_  t ) ) ) )
7750, 75, 76sylanbrc 670 1  |-  ( ( X  e.  V  /\  F : ~P X --> ~P X
)  ->  { s  e.  ~P X  |  U. ( F " ( ~P s  i^i  Fin )
)  C_  s }  e.  (ACS `  X )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444   E.wex 1663    e. wcel 1887   A.wral 2737   {crab 2741   _Vcvv 3045    i^i cin 3403    C_ wss 3404   ~Pcpw 3951   U.cuni 4198   |^|cint 4234    X. cxp 4832   ran crn 4835   "cima 4837   -->wf 5578   ` cfv 5582   Fincfn 7569  Moorecmre 15488  ACScacs 15491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-int 4235  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-fv 5590  df-mre 15492  df-acs 15495
This theorem is referenced by:  acsfn  15565
  Copyright terms: Public domain W3C validator