MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem1 Structured version   Visualization version   GIF version

Theorem ioombl1lem1 23133
Description: Lemma for ioombl1 23137. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
ioombl1.b 𝐵 = (𝐴(,)+∞)
ioombl1.a (𝜑𝐴 ∈ ℝ)
ioombl1.e (𝜑𝐸 ⊆ ℝ)
ioombl1.v (𝜑 → (vol*‘𝐸) ∈ ℝ)
ioombl1.c (𝜑𝐶 ∈ ℝ+)
ioombl1.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ioombl1.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ioombl1.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ioombl1.f1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ioombl1.f2 (𝜑𝐸 ran ((,) ∘ 𝐹))
ioombl1.f3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
ioombl1.p 𝑃 = (1st ‘(𝐹𝑛))
ioombl1.q 𝑄 = (2nd ‘(𝐹𝑛))
ioombl1.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
ioombl1.h 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
Assertion
Ref Expression
ioombl1lem1 (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
Distinct variable groups:   𝐵,𝑛   𝐶,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐻   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)   𝑄(𝑛)   𝑇(𝑛)   𝑈(𝑛)

Proof of Theorem ioombl1lem1
StepHypRef Expression
1 ioombl1.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
21adantr 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
3 ioombl1.p . . . . . . . 8 𝑃 = (1st ‘(𝐹𝑛))
4 ioombl1.f1 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
5 ovolfcl 23042 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
64, 5sylan 487 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛)) ∈ ℝ ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
76simp1d 1066 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ)
83, 7syl5eqel 2692 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → 𝑃 ∈ ℝ)
92, 8ifcld 4081 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ)
10 ioombl1.q . . . . . . 7 𝑄 = (2nd ‘(𝐹𝑛))
116simp2d 1067 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ)
1210, 11syl5eqel 2692 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑄 ∈ ℝ)
13 min2 11895 . . . . . 6 ((if(𝑃𝐴, 𝐴, 𝑃) ∈ ℝ ∧ 𝑄 ∈ ℝ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄)
149, 12, 13syl2anc 691 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄)
15 df-br 4584 . . . . 5 (if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ≤ 𝑄 ↔ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ ≤ )
1614, 15sylib 207 . . . 4 ((𝜑𝑛 ∈ ℕ) → ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ ≤ )
179, 12ifcld 4081 . . . . 5 ((𝜑𝑛 ∈ ℕ) → if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ)
18 opelxpi 5072 . . . . 5 ((if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ ∧ 𝑄 ∈ ℝ) → ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ (ℝ × ℝ))
1917, 12, 18syl2anc 691 . . . 4 ((𝜑𝑛 ∈ ℕ) → ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ (ℝ × ℝ))
2016, 19elind 3760 . . 3 ((𝜑𝑛 ∈ ℕ) → ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
21 ioombl1.g . . 3 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
2220, 21fmptd 6292 . 2 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
23 max1 11890 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝑃 ≤ if(𝑃𝐴, 𝐴, 𝑃))
248, 2, 23syl2anc 691 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑃 ≤ if(𝑃𝐴, 𝐴, 𝑃))
256simp3d 1068 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
2625, 3, 103brtr4g 4617 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑃𝑄)
27 breq2 4587 . . . . . . 7 (if(𝑃𝐴, 𝐴, 𝑃) = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) → (𝑃 ≤ if(𝑃𝐴, 𝐴, 𝑃) ↔ 𝑃 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
28 breq2 4587 . . . . . . 7 (𝑄 = if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) → (𝑃𝑄𝑃 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)))
2927, 28ifboth 4074 . . . . . 6 ((𝑃 ≤ if(𝑃𝐴, 𝐴, 𝑃) ∧ 𝑃𝑄) → 𝑃 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
3024, 26, 29syl2anc 691 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑃 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄))
31 df-br 4584 . . . . 5 (𝑃 ≤ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ↔ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ ≤ )
3230, 31sylib 207 . . . 4 ((𝜑𝑛 ∈ ℕ) → ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ ≤ )
33 opelxpi 5072 . . . . 5 ((𝑃 ∈ ℝ ∧ if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄) ∈ ℝ) → ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ (ℝ × ℝ))
348, 17, 33syl2anc 691 . . . 4 ((𝜑𝑛 ∈ ℕ) → ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ (ℝ × ℝ))
3532, 34elind 3760 . . 3 ((𝜑𝑛 ∈ ℕ) → ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩ ∈ ( ≤ ∩ (ℝ × ℝ)))
36 ioombl1.h . . 3 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
3735, 36fmptd 6292 . 2 (𝜑𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3822, 37jca 553 1 (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cin 3539  wss 3540  ifcif 4036  cop 4131   cuni 4372   class class class wbr 4583  cmpt 4643   × cxp 5036  ran crn 5039  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  supcsup 8229  cr 9814  1c1 9816   + caddc 9818  +∞cpnf 9950  *cxr 9952   < clt 9953  cle 9954  cmin 10145  cn 10897  +crp 11708  (,)cioo 12046  seqcseq 12663  abscabs 13822  vol*covol 23038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959
This theorem is referenced by:  ioombl1lem3  23135  ioombl1lem4  23136
  Copyright terms: Public domain W3C validator