Step | Hyp | Ref
| Expression |
1 | | elxr 11826 |
. 2
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) |
2 | | ioossre 12106 |
. . . . 5
⊢ (𝐴(,)+∞) ⊆
ℝ |
3 | 2 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ ℝ → (𝐴(,)+∞) ⊆
ℝ) |
4 | | elpwi 4117 |
. . . . . 6
⊢ (𝑥 ∈ 𝒫 ℝ →
𝑥 ⊆
ℝ) |
5 | | simplrl 796 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) → 𝑥 ⊆ ℝ) |
6 | | simplrr 797 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) → (vol*‘𝑥) ∈ ℝ) |
7 | | simpr 476 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) → 𝑦 ∈ ℝ+) |
8 | | eqid 2610 |
. . . . . . . . . . . 12
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
9 | 8 | ovolgelb 23055 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ ∧ 𝑦 ∈
ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)(𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦))) |
10 | 5, 6, 7, 9 | syl3anc 1318 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)(𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦))) |
11 | | eqid 2610 |
. . . . . . . . . . 11
⊢ (𝐴(,)+∞) = (𝐴(,)+∞) |
12 | | simplll 794 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝐴 ∈ ℝ) |
13 | 5 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝑥 ⊆ ℝ) |
14 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → (vol*‘𝑥) ∈
ℝ) |
15 | | simplr 788 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝑦 ∈ ℝ+) |
16 | | eqid 2610 |
. . . . . . . . . . 11
⊢ seq1( + ,
((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦
〈if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))〉))) = seq1( + , ((abs ∘ −
) ∘ (𝑚 ∈ ℕ
↦ 〈if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))〉))) |
17 | | eqid 2610 |
. . . . . . . . . . 11
⊢ seq1( + ,
((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ 〈(1st
‘(𝑓‘𝑚)), if(if((1st
‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚)))〉))) = seq1( + , ((abs ∘
− ) ∘ (𝑚 ∈
ℕ ↦ 〈(1st ‘(𝑓‘𝑚)), if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚)))〉))) |
18 | | simprl 790 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ)) |
19 | | reex 9906 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V |
20 | 19, 19 | xpex 6860 |
. . . . . . . . . . . . . 14
⊢ (ℝ
× ℝ) ∈ V |
21 | 20 | inex2 4728 |
. . . . . . . . . . . . 13
⊢ ( ≤
∩ (ℝ × ℝ)) ∈ V |
22 | | nnex 10903 |
. . . . . . . . . . . . 13
⊢ ℕ
∈ V |
23 | 21, 22 | elmap 7772 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
24 | 18, 23 | sylib 207 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) |
25 | | simprrl 800 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → 𝑥 ⊆ ∪ ran
((,) ∘ 𝑓)) |
26 | | simprrr 801 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → sup(ran seq1( + ,
((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)) |
27 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(1st ‘(𝑓‘𝑛)) = (1st ‘(𝑓‘𝑛)) |
28 | | eqid 2610 |
. . . . . . . . . . 11
⊢
(2nd ‘(𝑓‘𝑛)) = (2nd ‘(𝑓‘𝑛)) |
29 | | fveq2 6103 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = 𝑛 → (𝑓‘𝑚) = (𝑓‘𝑛)) |
30 | 29 | fveq2d 6107 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑛 → (1st ‘(𝑓‘𝑚)) = (1st ‘(𝑓‘𝑛))) |
31 | 30 | breq1d 4593 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑛 → ((1st ‘(𝑓‘𝑚)) ≤ 𝐴 ↔ (1st ‘(𝑓‘𝑛)) ≤ 𝐴)) |
32 | 31, 30 | ifbieq2d 4061 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) = if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛)))) |
33 | 29 | fveq2d 6107 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑛 → (2nd ‘(𝑓‘𝑚)) = (2nd ‘(𝑓‘𝑛))) |
34 | 32, 33 | breq12d 4596 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑛 → (if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)) ↔ if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)))) |
35 | 34, 32, 33 | ifbieq12d 4063 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))) = if(if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛)))) |
36 | 35, 33 | opeq12d 4348 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → 〈if(if((1st
‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))〉 = 〈if(if((1st
‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛))〉) |
37 | 36 | cbvmptv 4678 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ ↦
〈if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚))〉) = (𝑛 ∈ ℕ ↦
〈if(if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛))〉) |
38 | 30, 35 | opeq12d 4348 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → 〈(1st ‘(𝑓‘𝑚)), if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚)))〉 = 〈(1st
‘(𝑓‘𝑛)), if(if((1st
‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛)))〉) |
39 | 38 | cbvmptv 4678 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ ↦
〈(1st ‘(𝑓‘𝑚)), if(if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))) ≤ (2nd ‘(𝑓‘𝑚)), if((1st ‘(𝑓‘𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑚))), (2nd ‘(𝑓‘𝑚)))〉) = (𝑛 ∈ ℕ ↦ 〈(1st
‘(𝑓‘𝑛)), if(if((1st
‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))) ≤ (2nd ‘(𝑓‘𝑛)), if((1st ‘(𝑓‘𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓‘𝑛))), (2nd ‘(𝑓‘𝑛)))〉) |
40 | 11, 12, 13, 14, 15, 8, 16, 17, 24, 25, 26, 27, 28, 37, 39 | ioombl1lem4 23136 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ⊆ ∪ ran
((,) ∘ 𝑓) ∧
sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤
((vol*‘𝑥) + 𝑦)))) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)) |
41 | 10, 40 | rexlimddv 3017 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) ∧ 𝑦 ∈
ℝ+) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)) |
42 | 41 | ralrimiva 2949 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → ∀𝑦
∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)) |
43 | | inss1 3795 |
. . . . . . . . . . . 12
⊢ (𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥 |
44 | | ovolsscl 23061 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) →
(vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈
ℝ) |
45 | 43, 44 | mp3an1 1403 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈
ℝ) |
46 | 45 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈
ℝ) |
47 | | difss 3699 |
. . . . . . . . . . . 12
⊢ (𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥 |
48 | | ovolsscl 23061 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥 ∧ 𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) →
(vol*‘(𝑥 ∖
(𝐴(,)+∞))) ∈
ℝ) |
49 | 47, 48 | mp3an1 1403 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈
ℝ) |
50 | 49 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈
ℝ) |
51 | 46, 50 | readdcld 9948 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ∈
ℝ) |
52 | | simprr 792 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (vol*‘𝑥) ∈ ℝ) |
53 | | alrple 11911 |
. . . . . . . . 9
⊢
((((vol*‘(𝑥
∩ (𝐴(,)+∞))) +
(vol*‘(𝑥 ∖
(𝐴(,)+∞)))) ∈
ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+
((vol*‘(𝑥 ∩
(𝐴(,)+∞))) +
(vol*‘(𝑥 ∖
(𝐴(,)+∞)))) ≤
((vol*‘𝑥) + 𝑦))) |
54 | 51, 52, 53 | syl2anc 691 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+
((vol*‘(𝑥 ∩
(𝐴(,)+∞))) +
(vol*‘(𝑥 ∖
(𝐴(,)+∞)))) ≤
((vol*‘𝑥) + 𝑦))) |
55 | 42, 54 | mpbird 246 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧
(vol*‘𝑥) ∈
ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)) |
56 | 55 | expr 641 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ⊆ ℝ) →
((vol*‘𝑥) ∈
ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))) |
57 | 4, 56 | sylan2 490 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝒫 ℝ)
→ ((vol*‘𝑥)
∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))) |
58 | 57 | ralrimiva 2949 |
. . . 4
⊢ (𝐴 ∈ ℝ →
∀𝑥 ∈ 𝒫
ℝ((vol*‘𝑥)
∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))) |
59 | | ismbl2 23102 |
. . . 4
⊢ ((𝐴(,)+∞) ∈ dom vol
↔ ((𝐴(,)+∞)
⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ →
((vol*‘(𝑥 ∩
(𝐴(,)+∞))) +
(vol*‘(𝑥 ∖
(𝐴(,)+∞)))) ≤
(vol*‘𝑥)))) |
60 | 3, 58, 59 | sylanbrc 695 |
. . 3
⊢ (𝐴 ∈ ℝ → (𝐴(,)+∞) ∈ dom
vol) |
61 | | oveq1 6556 |
. . . . 5
⊢ (𝐴 = +∞ → (𝐴(,)+∞) =
(+∞(,)+∞)) |
62 | | iooid 12074 |
. . . . 5
⊢
(+∞(,)+∞) = ∅ |
63 | 61, 62 | syl6eq 2660 |
. . . 4
⊢ (𝐴 = +∞ → (𝐴(,)+∞) =
∅) |
64 | | 0mbl 23114 |
. . . 4
⊢ ∅
∈ dom vol |
65 | 63, 64 | syl6eqel 2696 |
. . 3
⊢ (𝐴 = +∞ → (𝐴(,)+∞) ∈ dom
vol) |
66 | | oveq1 6556 |
. . . . 5
⊢ (𝐴 = -∞ → (𝐴(,)+∞) =
(-∞(,)+∞)) |
67 | | ioomax 12119 |
. . . . 5
⊢
(-∞(,)+∞) = ℝ |
68 | 66, 67 | syl6eq 2660 |
. . . 4
⊢ (𝐴 = -∞ → (𝐴(,)+∞) =
ℝ) |
69 | | rembl 23115 |
. . . 4
⊢ ℝ
∈ dom vol |
70 | 68, 69 | syl6eqel 2696 |
. . 3
⊢ (𝐴 = -∞ → (𝐴(,)+∞) ∈ dom
vol) |
71 | 60, 65, 70 | 3jaoi 1383 |
. 2
⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴(,)+∞) ∈ dom
vol) |
72 | 1, 71 | sylbi 206 |
1
⊢ (𝐴 ∈ ℝ*
→ (𝐴(,)+∞)
∈ dom vol) |