MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem1 Structured version   Unicode version

Theorem ioombl1lem1 22076
Description: Lemma for ioombl1 22080. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
ioombl1.b  |-  B  =  ( A (,) +oo )
ioombl1.a  |-  ( ph  ->  A  e.  RR )
ioombl1.e  |-  ( ph  ->  E  C_  RR )
ioombl1.v  |-  ( ph  ->  ( vol* `  E )  e.  RR )
ioombl1.c  |-  ( ph  ->  C  e.  RR+ )
ioombl1.s  |-  S  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
ioombl1.t  |-  T  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
ioombl1.u  |-  U  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  H ) )
ioombl1.f1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
ioombl1.f2  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  F ) )
ioombl1.f3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( ( vol* `  E )  +  C
) )
ioombl1.p  |-  P  =  ( 1st `  ( F `  n )
)
ioombl1.q  |-  Q  =  ( 2nd `  ( F `  n )
)
ioombl1.g  |-  G  =  ( n  e.  NN  |->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
ioombl1.h  |-  H  =  ( n  e.  NN  |->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
Assertion
Ref Expression
ioombl1lem1  |-  ( ph  ->  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) ) )
Distinct variable groups:    B, n    C, n    n, E    n, F    n, G    n, H    ph, n    S, n
Allowed substitution hints:    A( n)    P( n)    Q( n)    T( n)    U( n)

Proof of Theorem ioombl1lem1
StepHypRef Expression
1 ioombl1.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR )
21adantr 463 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  A  e.  RR )
3 ioombl1.p . . . . . . . 8  |-  P  =  ( 1st `  ( F `  n )
)
4 ioombl1.f1 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
5 ovolfcl 21986 . . . . . . . . . 10  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  n  e.  NN )  ->  (
( 1st `  ( F `  n )
)  e.  RR  /\  ( 2nd `  ( F `
 n ) )  e.  RR  /\  ( 1st `  ( F `  n ) )  <_ 
( 2nd `  ( F `  n )
) ) )
64, 5sylan 469 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st `  ( F `
 n ) )  e.  RR  /\  ( 2nd `  ( F `  n ) )  e.  RR  /\  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) ) )
76simp1d 1006 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  e.  RR )
83, 7syl5eqel 2488 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  P  e.  RR )
92, 8ifcld 3917 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  if ( P  <_  A ,  A ,  P )  e.  RR )
10 ioombl1.q . . . . . . 7  |-  Q  =  ( 2nd `  ( F `  n )
)
116simp2d 1007 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( 2nd `  ( F `  n
) )  e.  RR )
1210, 11syl5eqel 2488 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  Q  e.  RR )
13 min2 11333 . . . . . 6  |-  ( ( if ( P  <_  A ,  A ,  P )  e.  RR  /\  Q  e.  RR )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  <_  Q
)
149, 12, 13syl2anc 659 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  <_  Q )
15 df-br 4385 . . . . 5  |-  ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  <_  Q  <->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e. 
<_  )
1614, 15sylib 196 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e. 
<_  )
179, 12ifcld 3917 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )
18 opelxpi 4962 . . . . 5  |-  ( ( if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  e.  RR  /\  Q  e.  RR )  ->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >.  e.  ( RR  X.  RR ) )
1917, 12, 18syl2anc 659 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e.  ( RR  X.  RR ) )
2016, 19elind 3619 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ,  Q >.  e.  (  <_  i^i  ( RR  X.  RR ) ) )
21 ioombl1.g . . 3  |-  G  =  ( n  e.  NN  |->  <. if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) ,  Q >. )
2220, 21fmptd 5974 . 2  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
23 max1 11329 . . . . . . 7  |-  ( ( P  e.  RR  /\  A  e.  RR )  ->  P  <_  if ( P  <_  A ,  A ,  P ) )
248, 2, 23syl2anc 659 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  P  <_  if ( P  <_  A ,  A ,  P ) )
256simp3d 1008 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1st `  ( F `  n
) )  <_  ( 2nd `  ( F `  n ) ) )
2625, 3, 103brtr4g 4416 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  P  <_  Q )
27 breq2 4388 . . . . . . 7  |-  ( if ( P  <_  A ,  A ,  P )  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  ->  ( P  <_  if ( P  <_  A ,  A ,  P )  <->  P  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ) )
28 breq2 4388 . . . . . . 7  |-  ( Q  =  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  ->  ( P  <_  Q  <->  P  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) ) )
2927, 28ifboth 3910 . . . . . 6  |-  ( ( P  <_  if ( P  <_  A ,  A ,  P )  /\  P  <_  Q )  ->  P  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q ) )
3024, 26, 29syl2anc 659 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  P  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) )
31 df-br 4385 . . . . 5  |-  ( P  <_  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q )  <->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  <_  )
3230, 31sylib 196 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  <_  )
33 opelxpi 4962 . . . . 5  |-  ( ( P  e.  RR  /\  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
)  e.  RR )  ->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  ( RR 
X.  RR ) )
348, 17, 33syl2anc 659 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  ( RR 
X.  RR ) )
3532, 34elind 3619 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >.  e.  (  <_  i^i  ( RR  X.  RR ) ) )
36 ioombl1.h . . 3  |-  H  =  ( n  e.  NN  |->  <. P ,  if ( if ( P  <_  A ,  A ,  P )  <_  Q ,  if ( P  <_  A ,  A ,  P ) ,  Q
) >. )
3735, 36fmptd 5974 . 2  |-  ( ph  ->  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
3822, 37jca 530 1  |-  ( ph  ->  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  H : NN --> (  <_  i^i  ( RR  X.  RR ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836    i^i cin 3405    C_ wss 3406   ifcif 3874   <.cop 3967   U.cuni 4180   class class class wbr 4384    |-> cmpt 4442    X. cxp 4928   ran crn 4931    o. ccom 4934   -->wf 5509   ` cfv 5513  (class class class)co 6218   1stc1st 6719   2ndc2nd 6720   supcsup 7837   RRcr 9424   1c1 9426    + caddc 9428   +oocpnf 9558   RR*cxr 9560    < clt 9561    <_ cle 9562    - cmin 9740   NNcn 10474   RR+crp 11161   (,)cioo 11472    seqcseq 12033   abscabs 13092   vol*covol 21982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513  ax-cnex 9481  ax-resscn 9482  ax-pre-lttri 9499  ax-pre-lttrn 9500
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-nel 2594  df-ral 2751  df-rex 2752  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4181  df-br 4385  df-opab 4443  df-mpt 4444  df-id 4726  df-po 4731  df-so 4732  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-1st 6721  df-2nd 6722  df-er 7251  df-en 7458  df-dom 7459  df-sdom 7460  df-pnf 9563  df-mnf 9564  df-xr 9565  df-ltxr 9566  df-le 9567
This theorem is referenced by:  ioombl1lem3  22078  ioombl1lem4  22079
  Copyright terms: Public domain W3C validator