Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1lem2 Structured version   Visualization version   GIF version

Theorem ioombl1lem2 23134
 Description: Lemma for ioombl1 23137. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
ioombl1.b 𝐵 = (𝐴(,)+∞)
ioombl1.a (𝜑𝐴 ∈ ℝ)
ioombl1.e (𝜑𝐸 ⊆ ℝ)
ioombl1.v (𝜑 → (vol*‘𝐸) ∈ ℝ)
ioombl1.c (𝜑𝐶 ∈ ℝ+)
ioombl1.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ioombl1.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ioombl1.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ioombl1.f1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
ioombl1.f2 (𝜑𝐸 ran ((,) ∘ 𝐹))
ioombl1.f3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
ioombl1.p 𝑃 = (1st ‘(𝐹𝑛))
ioombl1.q 𝑄 = (2nd ‘(𝐹𝑛))
ioombl1.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩)
ioombl1.h 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃𝐴, 𝐴, 𝑃), 𝑄)⟩)
Assertion
Ref Expression
ioombl1lem2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
Distinct variable groups:   𝐵,𝑛   𝐶,𝑛   𝑛,𝐸   𝑛,𝐹   𝑛,𝐺   𝑛,𝐻   𝜑,𝑛   𝑆,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)   𝑄(𝑛)   𝑇(𝑛)   𝑈(𝑛)

Proof of Theorem ioombl1lem2
StepHypRef Expression
1 ioombl1.f1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2 eqid 2610 . . . . . . 7 ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹)
3 ioombl1.s . . . . . . 7 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
42, 3ovolsf 23048 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞))
51, 4syl 17 . . . . 5 (𝜑𝑆:ℕ⟶(0[,)+∞))
6 frn 5966 . . . . 5 (𝑆:ℕ⟶(0[,)+∞) → ran 𝑆 ⊆ (0[,)+∞))
75, 6syl 17 . . . 4 (𝜑 → ran 𝑆 ⊆ (0[,)+∞))
8 icossxr 12129 . . . 4 (0[,)+∞) ⊆ ℝ*
97, 8syl6ss 3580 . . 3 (𝜑 → ran 𝑆 ⊆ ℝ*)
10 supxrcl 12017 . . 3 (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
119, 10syl 17 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*)
12 ioombl1.v . . 3 (𝜑 → (vol*‘𝐸) ∈ ℝ)
13 ioombl1.c . . . 4 (𝜑𝐶 ∈ ℝ+)
1413rpred 11748 . . 3 (𝜑𝐶 ∈ ℝ)
1512, 14readdcld 9948 . 2 (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ)
16 mnfxr 9975 . . . 4 -∞ ∈ ℝ*
1716a1i 11 . . 3 (𝜑 → -∞ ∈ ℝ*)
18 ffn 5958 . . . . . 6 (𝑆:ℕ⟶(0[,)+∞) → 𝑆 Fn ℕ)
195, 18syl 17 . . . . 5 (𝜑𝑆 Fn ℕ)
20 1nn 10908 . . . . 5 1 ∈ ℕ
21 fnfvelrn 6264 . . . . 5 ((𝑆 Fn ℕ ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ ran 𝑆)
2219, 20, 21sylancl 693 . . . 4 (𝜑 → (𝑆‘1) ∈ ran 𝑆)
239, 22sseldd 3569 . . 3 (𝜑 → (𝑆‘1) ∈ ℝ*)
24 rge0ssre 12151 . . . . 5 (0[,)+∞) ⊆ ℝ
25 ffvelrn 6265 . . . . . 6 ((𝑆:ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ (0[,)+∞))
265, 20, 25sylancl 693 . . . . 5 (𝜑 → (𝑆‘1) ∈ (0[,)+∞))
2724, 26sseldi 3566 . . . 4 (𝜑 → (𝑆‘1) ∈ ℝ)
28 mnflt 11833 . . . 4 ((𝑆‘1) ∈ ℝ → -∞ < (𝑆‘1))
2927, 28syl 17 . . 3 (𝜑 → -∞ < (𝑆‘1))
30 supxrub 12026 . . . 4 ((ran 𝑆 ⊆ ℝ* ∧ (𝑆‘1) ∈ ran 𝑆) → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < ))
319, 22, 30syl2anc 691 . . 3 (𝜑 → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < ))
3217, 23, 11, 29, 31xrltletrd 11868 . 2 (𝜑 → -∞ < sup(ran 𝑆, ℝ*, < ))
33 ioombl1.f3 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))
34 xrre 11874 . 2 (((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐸) + 𝐶) ∈ ℝ) ∧ (-∞ < sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
3511, 15, 32, 33, 34syl22anc 1319 1 (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977   ∩ cin 3539   ⊆ wss 3540  ifcif 4036  ⟨cop 4131  ∪ cuni 4372   class class class wbr 4583   ↦ cmpt 4643   × cxp 5036  ran crn 5039   ∘ ccom 5042   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  supcsup 8229  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950  -∞cmnf 9951  ℝ*cxr 9952   < clt 9953   ≤ cle 9954   − cmin 10145  ℕcn 10897  ℝ+crp 11708  (,)cioo 12046  [,)cico 12048  seqcseq 12663  abscabs 13822  vol*covol 23038 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824 This theorem is referenced by:  ioombl1lem4  23136
 Copyright terms: Public domain W3C validator