Step | Hyp | Ref
| Expression |
1 | | hbtlem.s |
. . . . . 6
⊢ 𝑆 = (ldgIdlSeq‘𝑅) |
2 | | elex 3185 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
3 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) =
(Poly1‘𝑅)) |
4 | | hbtlem.p |
. . . . . . . . . . . 12
⊢ 𝑃 = (Poly1‘𝑅) |
5 | 3, 4 | syl6eqr 2662 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (Poly1‘𝑟) = 𝑃) |
6 | 5 | fveq2d 6107 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 →
(LIdeal‘(Poly1‘𝑟)) = (LIdeal‘𝑃)) |
7 | | hbtlem.u |
. . . . . . . . . 10
⊢ 𝑈 = (LIdeal‘𝑃) |
8 | 6, 7 | syl6eqr 2662 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 →
(LIdeal‘(Poly1‘𝑟)) = 𝑈) |
9 | | fveq2 6103 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑅 → ( deg1 ‘𝑟) = ( deg1
‘𝑅)) |
10 | | hbtlem.d |
. . . . . . . . . . . . . . . 16
⊢ 𝐷 = ( deg1
‘𝑅) |
11 | 9, 10 | syl6eqr 2662 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑅 → ( deg1 ‘𝑟) = 𝐷) |
12 | 11 | fveq1d 6105 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑅 → (( deg1 ‘𝑟)‘𝑘) = (𝐷‘𝑘)) |
13 | 12 | breq1d 4593 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑅 → ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ↔ (𝐷‘𝑘) ≤ 𝑥)) |
14 | 13 | anbi1d 737 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑅 → (((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) ↔ ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)))) |
15 | 14 | rexbidv 3034 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑅 → (∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) ↔ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)))) |
16 | 15 | abbidv 2728 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) |
17 | 16 | mpteq2dv 4673 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) |
18 | 8, 17 | mpteq12dv 4663 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
19 | | df-ldgis 36711 |
. . . . . . . 8
⊢ ldgIdlSeq
= (𝑟 ∈ V ↦
(𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((( deg1 ‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
20 | | fvex 6113 |
. . . . . . . . . 10
⊢
(LIdeal‘𝑃)
∈ V |
21 | 7, 20 | eqeltri 2684 |
. . . . . . . . 9
⊢ 𝑈 ∈ V |
22 | 21 | mptex 6390 |
. . . . . . . 8
⊢ (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) ∈ V |
23 | 18, 19, 22 | fvmpt 6191 |
. . . . . . 7
⊢ (𝑅 ∈ V →
(ldgIdlSeq‘𝑅) =
(𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
24 | 2, 23 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (ldgIdlSeq‘𝑅) = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
25 | 1, 24 | syl5eq 2656 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
26 | 25 | fveq1d 6105 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (𝑆‘𝐼) = ((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼)) |
27 | 26 | fveq1d 6105 |
. . 3
⊢ (𝑅 ∈ 𝑉 → ((𝑆‘𝐼)‘𝑋) = (((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼)‘𝑋)) |
28 | 27 | 3ad2ant1 1075 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = (((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼)‘𝑋)) |
29 | | rexeq 3116 |
. . . . . . 7
⊢ (𝑖 = 𝐼 → (∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) ↔ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)))) |
30 | 29 | abbidv 2728 |
. . . . . 6
⊢ (𝑖 = 𝐼 → {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) |
31 | 30 | mpteq2dv 4673 |
. . . . 5
⊢ (𝑖 = 𝐼 → (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) |
32 | | eqid 2610 |
. . . . 5
⊢ (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) = (𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) |
33 | | nn0ex 11175 |
. . . . . 6
⊢
ℕ0 ∈ V |
34 | 33 | mptex 6390 |
. . . . 5
⊢ (𝑥 ∈ ℕ0
↦ {𝑗 ∣
∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) ∈ V |
35 | 31, 32, 34 | fvmpt 6191 |
. . . 4
⊢ (𝐼 ∈ 𝑈 → ((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})) |
36 | 35 | fveq1d 6105 |
. . 3
⊢ (𝐼 ∈ 𝑈 → (((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})‘𝑋)) |
37 | 36 | 3ad2ant2 1076 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → (((𝑖 ∈ 𝑈 ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))‘𝐼)‘𝑋) = ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})‘𝑋)) |
38 | | simp3 1056 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → 𝑋 ∈
ℕ0) |
39 | | simpr 476 |
. . . . . 6
⊢ (((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋)) → 𝑗 = ((coe1‘𝑘)‘𝑋)) |
40 | 39 | reximi 2994 |
. . . . 5
⊢
(∃𝑘 ∈
𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋)) → ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)) |
41 | 40 | ss2abi 3637 |
. . . 4
⊢ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)} |
42 | | abrexexg 7034 |
. . . . 5
⊢ (𝐼 ∈ 𝑈 → {𝑗 ∣ ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)} ∈ V) |
43 | 42 | 3ad2ant2 1076 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)} ∈ V) |
44 | | ssexg 4732 |
. . . 4
⊢ (({𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))} ⊆ {𝑗 ∣ ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)} ∧ {𝑗 ∣ ∃𝑘 ∈ 𝐼 𝑗 = ((coe1‘𝑘)‘𝑋)} ∈ V) → {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))} ∈ V) |
45 | 41, 43, 44 | sylancr 694 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))} ∈ V) |
46 | | breq2 4587 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → ((𝐷‘𝑘) ≤ 𝑥 ↔ (𝐷‘𝑘) ≤ 𝑋)) |
47 | | fveq2 6103 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((coe1‘𝑘)‘𝑥) = ((coe1‘𝑘)‘𝑋)) |
48 | 47 | eqeq2d 2620 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝑗 = ((coe1‘𝑘)‘𝑥) ↔ 𝑗 = ((coe1‘𝑘)‘𝑋))) |
49 | 46, 48 | anbi12d 743 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) ↔ ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋)))) |
50 | 49 | rexbidv 3034 |
. . . . 5
⊢ (𝑥 = 𝑋 → (∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥)) ↔ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋)))) |
51 | 50 | abbidv 2728 |
. . . 4
⊢ (𝑥 = 𝑋 → {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))} = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))}) |
52 | | eqid 2610 |
. . . 4
⊢ (𝑥 ∈ ℕ0
↦ {𝑗 ∣
∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) = (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}) |
53 | 51, 52 | fvmptg 6189 |
. . 3
⊢ ((𝑋 ∈ ℕ0
∧ {𝑗 ∣
∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))} ∈ V) → ((𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})‘𝑋) = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))}) |
54 | 38, 45, 53 | syl2anc 691 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑥 ∈ ℕ0
↦ {𝑗 ∣
∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))})‘𝑋) = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))}) |
55 | 28, 37, 54 | 3eqtrd 2648 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))}) |