Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem1 Structured version   Unicode version

Theorem hbtlem1 29404
Description: Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
hbtlem.p  |-  P  =  (Poly1 `  R )
hbtlem.u  |-  U  =  (LIdeal `  P )
hbtlem.s  |-  S  =  (ldgIdlSeq `  R )
hbtlem.d  |-  D  =  ( deg1  `  R )
Assertion
Ref Expression
hbtlem1  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( S `  I ) `  X
)  =  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) } )
Distinct variable groups:    j, I,
k    R, j, k    j, X, k
Allowed substitution hints:    D( j, k)    P( j, k)    S( j, k)    U( j, k)    V( j, k)

Proof of Theorem hbtlem1
Dummy variables  i 
r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem.s . . . . . 6  |-  S  =  (ldgIdlSeq `  R )
2 elex 2979 . . . . . . 7  |-  ( R  e.  V  ->  R  e.  _V )
3 fveq2 5688 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
4 hbtlem.p . . . . . . . . . . . 12  |-  P  =  (Poly1 `  R )
53, 4syl6eqr 2491 . . . . . . . . . . 11  |-  ( r  =  R  ->  (Poly1 `  r )  =  P )
65fveq2d 5692 . . . . . . . . . 10  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  (LIdeal `  P
) )
7 hbtlem.u . . . . . . . . . 10  |-  U  =  (LIdeal `  P )
86, 7syl6eqr 2491 . . . . . . . . 9  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  U )
9 fveq2 5688 . . . . . . . . . . . . . . . 16  |-  ( r  =  R  ->  ( deg1  `  r )  =  ( deg1  `  R ) )
10 hbtlem.d . . . . . . . . . . . . . . . 16  |-  D  =  ( deg1  `  R )
119, 10syl6eqr 2491 . . . . . . . . . . . . . . 15  |-  ( r  =  R  ->  ( deg1  `  r )  =  D )
1211fveq1d 5690 . . . . . . . . . . . . . 14  |-  ( r  =  R  ->  (
( deg1  `
 r ) `  k )  =  ( D `  k ) )
1312breq1d 4299 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (
( ( deg1  `  r ) `  k )  <_  x  <->  ( D `  k )  <_  x ) )
1413anbi1d 699 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (
( ( ( deg1  `  r
) `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) )  <->  ( ( D `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) ) )
1514rexbidv 2734 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( E. k  e.  i 
( ( ( deg1  `  r
) `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) )  <->  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) ) )
1615abbidv 2555 . . . . . . . . . 10  |-  ( r  =  R  ->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) }  =  { j  |  E. k  e.  i  (
( D `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } )
1716mpteq2dv 4376 . . . . . . . . 9  |-  ( r  =  R  ->  (
x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } )  =  ( x  e. 
NN0  |->  { j  |  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) )
188, 17mpteq12dv 4367 . . . . . . . 8  |-  ( r  =  R  ->  (
i  e.  (LIdeal `  (Poly1 `  r ) )  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) )
19 df-ldgis 29403 . . . . . . . 8  |- ldgIdlSeq  =  ( r  e.  _V  |->  ( i  e.  (LIdeal `  (Poly1 `  r ) )  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) ) )
20 fvex 5698 . . . . . . . . . 10  |-  (LIdeal `  P )  e.  _V
217, 20eqeltri 2511 . . . . . . . . 9  |-  U  e. 
_V
2221mptex 5945 . . . . . . . 8  |-  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )  e.  _V
2318, 19, 22fvmpt 5771 . . . . . . 7  |-  ( R  e.  _V  ->  (ldgIdlSeq `  R )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) )
242, 23syl 16 . . . . . 6  |-  ( R  e.  V  ->  (ldgIdlSeq `  R )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) )
251, 24syl5eq 2485 . . . . 5  |-  ( R  e.  V  ->  S  =  ( i  e.  U  |->  ( x  e. 
NN0  |->  { j  |  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) ) )
2625fveq1d 5690 . . . 4  |-  ( R  e.  V  ->  ( S `  I )  =  ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) `  I
) )
2726fveq1d 5690 . . 3  |-  ( R  e.  V  ->  (
( S `  I
) `  X )  =  ( ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) `  I
) `  X )
)
28273ad2ant1 1004 . 2  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( S `  I ) `  X
)  =  ( ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  (
( D `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) ) `  I ) `
 X ) )
29 rexeq 2916 . . . . . . 7  |-  ( i  =  I  ->  ( E. k  e.  i 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) )  <->  E. k  e.  I  ( ( D `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) ) )
3029abbidv 2555 . . . . . 6  |-  ( i  =  I  ->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) }  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } )
3130mpteq2dv 4376 . . . . 5  |-  ( i  =  I  ->  (
x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )  =  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )
32 eqid 2441 . . . . 5  |-  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )
33 nn0ex 10581 . . . . . 6  |-  NN0  e.  _V
3433mptex 5945 . . . . 5  |-  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )  e.  _V
3531, 32, 34fvmpt 5771 . . . 4  |-  ( I  e.  U  ->  (
( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  (
( D `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) ) `  I )  =  ( x  e. 
NN0  |->  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) )
3635fveq1d 5690 . . 3  |-  ( I  e.  U  ->  (
( ( i  e.  U  |->  ( x  e. 
NN0  |->  { j  |  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) ) `  I
) `  X )  =  ( ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) `  X ) )
37363ad2ant2 1005 . 2  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) `  I
) `  X )  =  ( ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) `  X ) )
38 simp3 985 . . 3  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  ->  X  e.  NN0 )
39 simpr 458 . . . . . 6  |-  ( ( ( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) )  ->  j  =  ( (coe1 `  k
) `  X )
)
4039reximi 2821 . . . . 5  |-  ( E. k  e.  I  ( ( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) )  ->  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) )
4140ss2abi 3421 . . . 4  |-  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) } 
C_  { j  |  E. k  e.  I 
j  =  ( (coe1 `  k ) `  X
) }
42 abrexexg 6551 . . . . 5  |-  ( I  e.  U  ->  { j  |  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) }  e.  _V )
43423ad2ant2 1005 . . . 4  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  ->  { j  |  E. k  e.  I  j  =  ( (coe1 `  k
) `  X ) }  e.  _V )
44 ssexg 4435 . . . 4  |-  ( ( { j  |  E. k  e.  I  (
( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) ) }  C_  { j  |  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) }  /\  { j  |  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) }  e.  _V )  ->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) }  e.  _V )
4541, 43, 44sylancr 658 . . 3  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  ->  { j  |  E. k  e.  I  (
( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) ) }  e.  _V )
46 breq2 4293 . . . . . . 7  |-  ( x  =  X  ->  (
( D `  k
)  <_  x  <->  ( D `  k )  <_  X
) )
47 fveq2 5688 . . . . . . . 8  |-  ( x  =  X  ->  (
(coe1 `  k ) `  x )  =  ( (coe1 `  k ) `  X ) )
4847eqeq2d 2452 . . . . . . 7  |-  ( x  =  X  ->  (
j  =  ( (coe1 `  k ) `  x
)  <->  j  =  ( (coe1 `  k ) `  X ) ) )
4946, 48anbi12d 705 . . . . . 6  |-  ( x  =  X  ->  (
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) )  <->  ( ( D `  k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) ) )
5049rexbidv 2734 . . . . 5  |-  ( x  =  X  ->  ( E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) )  <->  E. k  e.  I  ( ( D `  k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) ) )
5150abbidv 2555 . . . 4  |-  ( x  =  X  ->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) }  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  X  /\  j  =  (
(coe1 `  k ) `  X ) ) } )
52 eqid 2441 . . . 4  |-  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )  =  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )
5351, 52fvmptg 5769 . . 3  |-  ( ( X  e.  NN0  /\  { j  |  E. k  e.  I  ( ( D `  k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) }  e.  _V )  -> 
( ( x  e. 
NN0  |->  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) `  X )  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  X  /\  j  =  (
(coe1 `  k ) `  X ) ) } )
5438, 45, 53syl2anc 656 . 2  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( x  e. 
NN0  |->  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) `  X )  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  X  /\  j  =  (
(coe1 `  k ) `  X ) ) } )
5528, 37, 543eqtrd 2477 1  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( S `  I ) `  X
)  =  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   {cab 2427   E.wrex 2714   _Vcvv 2970    C_ wss 3325   class class class wbr 4289    e. cmpt 4347   ` cfv 5415    <_ cle 9415   NN0cn0 10575  LIdealclidl 17229  Poly1cpl1 17609  coe1cco1 17610   deg1 cdg1 21482  ldgIdlSeqcldgis 29402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-i2m1 9346  ax-1ne0 9347  ax-rrecex 9350  ax-cnre 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-om 6476  df-recs 6828  df-rdg 6862  df-nn 10319  df-n0 10576  df-ldgis 29403
This theorem is referenced by:  hbtlem2  29405  hbtlem4  29407  hbtlem3  29408  hbtlem5  29409  hbtlem6  29410
  Copyright terms: Public domain W3C validator