Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem1 Structured version   Unicode version

Theorem hbtlem1 31280
Description: Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
hbtlem.p  |-  P  =  (Poly1 `  R )
hbtlem.u  |-  U  =  (LIdeal `  P )
hbtlem.s  |-  S  =  (ldgIdlSeq `  R )
hbtlem.d  |-  D  =  ( deg1  `  R )
Assertion
Ref Expression
hbtlem1  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( S `  I ) `  X
)  =  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) } )
Distinct variable groups:    j, I,
k    R, j, k    j, X, k
Allowed substitution hints:    D( j, k)    P( j, k)    S( j, k)    U( j, k)    V( j, k)

Proof of Theorem hbtlem1
Dummy variables  i 
r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem.s . . . . . 6  |-  S  =  (ldgIdlSeq `  R )
2 elex 3060 . . . . . . 7  |-  ( R  e.  V  ->  R  e.  _V )
3 fveq2 5791 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
4 hbtlem.p . . . . . . . . . . . 12  |-  P  =  (Poly1 `  R )
53, 4syl6eqr 2455 . . . . . . . . . . 11  |-  ( r  =  R  ->  (Poly1 `  r )  =  P )
65fveq2d 5795 . . . . . . . . . 10  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  (LIdeal `  P
) )
7 hbtlem.u . . . . . . . . . 10  |-  U  =  (LIdeal `  P )
86, 7syl6eqr 2455 . . . . . . . . 9  |-  ( r  =  R  ->  (LIdeal `  (Poly1 `  r ) )  =  U )
9 fveq2 5791 . . . . . . . . . . . . . . . 16  |-  ( r  =  R  ->  ( deg1  `  r )  =  ( deg1  `  R ) )
10 hbtlem.d . . . . . . . . . . . . . . . 16  |-  D  =  ( deg1  `  R )
119, 10syl6eqr 2455 . . . . . . . . . . . . . . 15  |-  ( r  =  R  ->  ( deg1  `  r )  =  D )
1211fveq1d 5793 . . . . . . . . . . . . . 14  |-  ( r  =  R  ->  (
( deg1  `
 r ) `  k )  =  ( D `  k ) )
1312breq1d 4394 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (
( ( deg1  `  r ) `  k )  <_  x  <->  ( D `  k )  <_  x ) )
1413anbi1d 702 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (
( ( ( deg1  `  r
) `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) )  <->  ( ( D `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) ) )
1514rexbidv 2910 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( E. k  e.  i 
( ( ( deg1  `  r
) `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) )  <->  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) ) )
1615abbidv 2532 . . . . . . . . . 10  |-  ( r  =  R  ->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) }  =  { j  |  E. k  e.  i  (
( D `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } )
1716mpteq2dv 4471 . . . . . . . . 9  |-  ( r  =  R  ->  (
x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } )  =  ( x  e. 
NN0  |->  { j  |  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) )
188, 17mpteq12dv 4462 . . . . . . . 8  |-  ( r  =  R  ->  (
i  e.  (LIdeal `  (Poly1 `  r ) )  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) )
19 df-ldgis 31279 . . . . . . . 8  |- ldgIdlSeq  =  ( r  e.  _V  |->  ( i  e.  (LIdeal `  (Poly1 `  r ) )  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( ( deg1  `  r ) `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) ) )
20 fvex 5801 . . . . . . . . . 10  |-  (LIdeal `  P )  e.  _V
217, 20eqeltri 2480 . . . . . . . . 9  |-  U  e. 
_V
2221mptex 6064 . . . . . . . 8  |-  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )  e.  _V
2318, 19, 22fvmpt 5874 . . . . . . 7  |-  ( R  e.  _V  ->  (ldgIdlSeq `  R )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) )
242, 23syl 16 . . . . . 6  |-  ( R  e.  V  ->  (ldgIdlSeq `  R )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) )
251, 24syl5eq 2449 . . . . 5  |-  ( R  e.  V  ->  S  =  ( i  e.  U  |->  ( x  e. 
NN0  |->  { j  |  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) ) )
2625fveq1d 5793 . . . 4  |-  ( R  e.  V  ->  ( S `  I )  =  ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) `  I
) )
2726fveq1d 5793 . . 3  |-  ( R  e.  V  ->  (
( S `  I
) `  X )  =  ( ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) `  I
) `  X )
)
28273ad2ant1 1015 . 2  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( S `  I ) `  X
)  =  ( ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  (
( D `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) ) `  I ) `
 X ) )
29 rexeq 2997 . . . . . . 7  |-  ( i  =  I  ->  ( E. k  e.  i 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) )  <->  E. k  e.  I  ( ( D `  k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) ) )
3029abbidv 2532 . . . . . 6  |-  ( i  =  I  ->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) }  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } )
3130mpteq2dv 4471 . . . . 5  |-  ( i  =  I  ->  (
x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )  =  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )
32 eqid 2396 . . . . 5  |-  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )  =  ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) )
33 nn0ex 10740 . . . . . 6  |-  NN0  e.  _V
3433mptex 6064 . . . . 5  |-  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )  e.  _V
3531, 32, 34fvmpt 5874 . . . 4  |-  ( I  e.  U  ->  (
( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  (
( D `  k
)  <_  x  /\  j  =  ( (coe1 `  k ) `  x
) ) } ) ) `  I )  =  ( x  e. 
NN0  |->  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) )
3635fveq1d 5793 . . 3  |-  ( I  e.  U  ->  (
( ( i  e.  U  |->  ( x  e. 
NN0  |->  { j  |  E. k  e.  i  ( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) ) `  I
) `  X )  =  ( ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) `  X ) )
37363ad2ant2 1016 . 2  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( ( i  e.  U  |->  ( x  e.  NN0  |->  { j  |  E. k  e.  i  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) ) `  I
) `  X )  =  ( ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } ) `  X ) )
38 simp3 996 . . 3  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  ->  X  e.  NN0 )
39 simpr 459 . . . . . 6  |-  ( ( ( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) )  ->  j  =  ( (coe1 `  k
) `  X )
)
4039reximi 2864 . . . . 5  |-  ( E. k  e.  I  ( ( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) )  ->  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) )
4140ss2abi 3503 . . . 4  |-  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) } 
C_  { j  |  E. k  e.  I 
j  =  ( (coe1 `  k ) `  X
) }
42 abrexexg 6696 . . . . 5  |-  ( I  e.  U  ->  { j  |  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) }  e.  _V )
43423ad2ant2 1016 . . . 4  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  ->  { j  |  E. k  e.  I  j  =  ( (coe1 `  k
) `  X ) }  e.  _V )
44 ssexg 4528 . . . 4  |-  ( ( { j  |  E. k  e.  I  (
( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) ) }  C_  { j  |  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) }  /\  { j  |  E. k  e.  I  j  =  ( (coe1 `  k ) `  X ) }  e.  _V )  ->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) }  e.  _V )
4541, 43, 44sylancr 661 . . 3  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  ->  { j  |  E. k  e.  I  (
( D `  k
)  <_  X  /\  j  =  ( (coe1 `  k ) `  X
) ) }  e.  _V )
46 breq2 4388 . . . . . . 7  |-  ( x  =  X  ->  (
( D `  k
)  <_  x  <->  ( D `  k )  <_  X
) )
47 fveq2 5791 . . . . . . . 8  |-  ( x  =  X  ->  (
(coe1 `  k ) `  x )  =  ( (coe1 `  k ) `  X ) )
4847eqeq2d 2410 . . . . . . 7  |-  ( x  =  X  ->  (
j  =  ( (coe1 `  k ) `  x
)  <->  j  =  ( (coe1 `  k ) `  X ) ) )
4946, 48anbi12d 708 . . . . . 6  |-  ( x  =  X  ->  (
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) )  <->  ( ( D `  k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) ) )
5049rexbidv 2910 . . . . 5  |-  ( x  =  X  ->  ( E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) )  <->  E. k  e.  I  ( ( D `  k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) ) )
5150abbidv 2532 . . . 4  |-  ( x  =  X  ->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) }  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  X  /\  j  =  (
(coe1 `  k ) `  X ) ) } )
52 eqid 2396 . . . 4  |-  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )  =  ( x  e.  NN0  |->  { j  |  E. k  e.  I  ( ( D `
 k )  <_  x  /\  j  =  ( (coe1 `  k ) `  x ) ) } )
5351, 52fvmptg 5872 . . 3  |-  ( ( X  e.  NN0  /\  { j  |  E. k  e.  I  ( ( D `  k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) }  e.  _V )  -> 
( ( x  e. 
NN0  |->  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) `  X )  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  X  /\  j  =  (
(coe1 `  k ) `  X ) ) } )
5438, 45, 53syl2anc 659 . 2  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( x  e. 
NN0  |->  { j  |  E. k  e.  I 
( ( D `  k )  <_  x  /\  j  =  (
(coe1 `  k ) `  x ) ) } ) `  X )  =  { j  |  E. k  e.  I 
( ( D `  k )  <_  X  /\  j  =  (
(coe1 `  k ) `  X ) ) } )
5528, 37, 543eqtrd 2441 1  |-  ( ( R  e.  V  /\  I  e.  U  /\  X  e.  NN0 )  -> 
( ( S `  I ) `  X
)  =  { j  |  E. k  e.  I  ( ( D `
 k )  <_  X  /\  j  =  ( (coe1 `  k ) `  X ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836   {cab 2381   E.wrex 2747   _Vcvv 3051    C_ wss 3406   class class class wbr 4384    |-> cmpt 4442   ` cfv 5513    <_ cle 9562   NN0cn0 10734  LIdealclidl 17952  Poly1cpl1 18352  coe1cco1 18353   deg1 cdg1 22560  ldgIdlSeqcldgis 31278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-rep 4495  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513  ax-cnex 9481  ax-resscn 9482  ax-1cn 9483  ax-icn 9484  ax-addcl 9485  ax-addrcl 9486  ax-mulcl 9487  ax-mulrcl 9488  ax-i2m1 9493  ax-1ne0 9494  ax-rrecex 9497  ax-cnre 9498
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-ral 2751  df-rex 2752  df-reu 2753  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4181  df-iun 4262  df-br 4385  df-opab 4443  df-mpt 4444  df-tr 4478  df-eprel 4722  df-id 4726  df-po 4731  df-so 4732  df-fr 4769  df-we 4771  df-ord 4812  df-on 4813  df-lim 4814  df-suc 4815  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-ov 6221  df-om 6622  df-recs 6982  df-rdg 7016  df-nn 10475  df-n0 10735  df-ldgis 31279
This theorem is referenced by:  hbtlem2  31281  hbtlem4  31283  hbtlem3  31284  hbtlem5  31285  hbtlem6  31286
  Copyright terms: Public domain W3C validator