Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem5 Structured version   Visualization version   GIF version

Theorem hbtlem5 36717
Description: The leading ideal function is strictly monotone. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem3.r (𝜑𝑅 ∈ Ring)
hbtlem3.i (𝜑𝐼𝑈)
hbtlem3.j (𝜑𝐽𝑈)
hbtlem3.ij (𝜑𝐼𝐽)
hbtlem5.e (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
Assertion
Ref Expression
hbtlem5 (𝜑𝐼 = 𝐽)
Distinct variable groups:   𝑥,𝐼   𝑥,𝐽   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑈(𝑥)

Proof of Theorem hbtlem5
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem3.ij . 2 (𝜑𝐼𝐽)
2 hbtlem3.j . . . . . . . . 9 (𝜑𝐽𝑈)
3 eqid 2610 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
4 hbtlem.u . . . . . . . . . 10 𝑈 = (LIdeal‘𝑃)
53, 4lidlss 19031 . . . . . . . . 9 (𝐽𝑈𝐽 ⊆ (Base‘𝑃))
62, 5syl 17 . . . . . . . 8 (𝜑𝐽 ⊆ (Base‘𝑃))
76sselda 3568 . . . . . . 7 ((𝜑𝑎𝐽) → 𝑎 ∈ (Base‘𝑃))
8 eqid 2610 . . . . . . . 8 ( deg1𝑅) = ( deg1𝑅)
9 hbtlem.p . . . . . . . 8 𝑃 = (Poly1𝑅)
108, 9, 3deg1cl 23647 . . . . . . 7 (𝑎 ∈ (Base‘𝑃) → (( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
117, 10syl 17 . . . . . 6 ((𝜑𝑎𝐽) → (( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
12 elun 3715 . . . . . . 7 ((( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) ↔ ((( deg1𝑅)‘𝑎) ∈ ℕ0 ∨ (( deg1𝑅)‘𝑎) ∈ {-∞}))
13 nnssnn0 11172 . . . . . . . . 9 ℕ ⊆ ℕ0
14 nn0re 11178 . . . . . . . . . 10 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → (( deg1𝑅)‘𝑎) ∈ ℝ)
15 arch 11166 . . . . . . . . . 10 ((( deg1𝑅)‘𝑎) ∈ ℝ → ∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏)
1614, 15syl 17 . . . . . . . . 9 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏)
17 ssrexv 3630 . . . . . . . . 9 (ℕ ⊆ ℕ0 → (∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏 → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏))
1813, 16, 17mpsyl 66 . . . . . . . 8 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
19 elsni 4142 . . . . . . . . 9 ((( deg1𝑅)‘𝑎) ∈ {-∞} → (( deg1𝑅)‘𝑎) = -∞)
20 0nn0 11184 . . . . . . . . . . 11 0 ∈ ℕ0
21 mnflt0 11835 . . . . . . . . . . 11 -∞ < 0
22 breq2 4587 . . . . . . . . . . . 12 (𝑏 = 0 → (-∞ < 𝑏 ↔ -∞ < 0))
2322rspcev 3282 . . . . . . . . . . 11 ((0 ∈ ℕ0 ∧ -∞ < 0) → ∃𝑏 ∈ ℕ0 -∞ < 𝑏)
2420, 21, 23mp2an 704 . . . . . . . . . 10 𝑏 ∈ ℕ0 -∞ < 𝑏
25 breq1 4586 . . . . . . . . . . 11 ((( deg1𝑅)‘𝑎) = -∞ → ((( deg1𝑅)‘𝑎) < 𝑏 ↔ -∞ < 𝑏))
2625rexbidv 3034 . . . . . . . . . 10 ((( deg1𝑅)‘𝑎) = -∞ → (∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏 ↔ ∃𝑏 ∈ ℕ0 -∞ < 𝑏))
2724, 26mpbiri 247 . . . . . . . . 9 ((( deg1𝑅)‘𝑎) = -∞ → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
2819, 27syl 17 . . . . . . . 8 ((( deg1𝑅)‘𝑎) ∈ {-∞} → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
2918, 28jaoi 393 . . . . . . 7 (((( deg1𝑅)‘𝑎) ∈ ℕ0 ∨ (( deg1𝑅)‘𝑎) ∈ {-∞}) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
3012, 29sylbi 206 . . . . . 6 ((( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
3111, 30syl 17 . . . . 5 ((𝜑𝑎𝐽) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
32 breq2 4587 . . . . . . . . . . . . 13 (𝑐 = 0 → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < 0))
3332imbi1d 330 . . . . . . . . . . . 12 (𝑐 = 0 → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3433ralbidv 2969 . . . . . . . . . . 11 (𝑐 = 0 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3534imbi2d 329 . . . . . . . . . 10 (𝑐 = 0 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))))
36 breq2 4587 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < 𝑏))
3736imbi1d 330 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3837ralbidv 2969 . . . . . . . . . . 11 (𝑐 = 𝑏 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3938imbi2d 329 . . . . . . . . . 10 (𝑐 = 𝑏 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
40 breq2 4587 . . . . . . . . . . . . . 14 (𝑐 = (𝑏 + 1) → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < (𝑏 + 1)))
4140imbi1d 330 . . . . . . . . . . . . 13 (𝑐 = (𝑏 + 1) → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
4241ralbidv 2969 . . . . . . . . . . . 12 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
43 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑎 = 𝑑 → (( deg1𝑅)‘𝑎) = (( deg1𝑅)‘𝑑))
4443breq1d 4593 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → ((( deg1𝑅)‘𝑎) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) < (𝑏 + 1)))
45 eleq1 2676 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → (𝑎𝐼𝑑𝐼))
4644, 45imbi12d 333 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → (((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4746cbvralv 3147 . . . . . . . . . . . 12 (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
4842, 47syl6bb 275 . . . . . . . . . . 11 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4948imbi2d 329 . . . . . . . . . 10 (𝑐 = (𝑏 + 1) → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
50 hbtlem3.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5150adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑎𝐽) → 𝑅 ∈ Ring)
52 eqid 2610 . . . . . . . . . . . . . 14 (0g𝑃) = (0g𝑃)
538, 9, 52, 3deg1lt0 23655 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑃)) → ((( deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
5451, 7, 53syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑎𝐽) → ((( deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
559ply1ring 19439 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5650, 55syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ Ring)
57 hbtlem3.i . . . . . . . . . . . . . . 15 (𝜑𝐼𝑈)
584, 52lidl0cl 19033 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
5956, 57, 58syl2anc 691 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑃) ∈ 𝐼)
60 eleq1a 2683 . . . . . . . . . . . . . 14 ((0g𝑃) ∈ 𝐼 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6159, 60syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6261adantr 480 . . . . . . . . . . . 12 ((𝜑𝑎𝐽) → (𝑎 = (0g𝑃) → 𝑎𝐼))
6354, 62sylbid 229 . . . . . . . . . . 11 ((𝜑𝑎𝐽) → ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6463ralrimiva 2949 . . . . . . . . . 10 (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6563ad2ant2 1076 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐽 ⊆ (Base‘𝑃))
6665sselda 3568 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑑 ∈ (Base‘𝑃))
678, 9, 3deg1cl 23647 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (Base‘𝑃) → (( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
6866, 67syl 17 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → (( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
69 simpl1 1057 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℕ0)
7069nn0zd 11356 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℤ)
71 degltp1le 23637 . . . . . . . . . . . . . . 15 (((( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}) ∧ 𝑏 ∈ ℤ) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
7268, 70, 71syl2anc 691 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
73 hbtlem5.e . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
74 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑏 → ((𝑆𝐽)‘𝑥) = ((𝑆𝐽)‘𝑏))
75 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑏 → ((𝑆𝐼)‘𝑥) = ((𝑆𝐼)‘𝑏))
7674, 75sseq12d 3597 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥) ↔ ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏)))
7776rspcva 3280 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥)) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7873, 77sylan2 490 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7950adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0𝜑) → 𝑅 ∈ Ring)
802adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0𝜑) → 𝐽𝑈)
81 simpl 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0𝜑) → 𝑏 ∈ ℕ0)
82 hbtlem.s . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = (ldgIdlSeq‘𝑅)
839, 4, 82, 8hbtlem1 36712 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ 𝐽𝑈𝑏 ∈ ℕ0) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8479, 80, 81, 83syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8557adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0𝜑) → 𝐼𝑈)
869, 4, 82, 8hbtlem1 36712 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑏 ∈ ℕ0) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8779, 85, 81, 86syl3anc 1318 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8878, 84, 873sstr3d 3610 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
89883adant3 1074 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
9089adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
91 simpl 472 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → 𝑑𝐽)
92 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → (( deg1𝑅)‘𝑑) ≤ 𝑏)
93 eqidd 2611 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))
94 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = 𝑑 → (( deg1𝑅)‘𝑒) = (( deg1𝑅)‘𝑑))
9594breq1d 4593 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑑 → ((( deg1𝑅)‘𝑒) ≤ 𝑏 ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
96 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = 𝑑 → (coe1𝑒) = (coe1𝑑))
9796fveq1d 6105 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = 𝑑 → ((coe1𝑒)‘𝑏) = ((coe1𝑑)‘𝑏))
9897eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑑 → (((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏)))
9995, 98anbi12d 743 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑑 → (((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) ↔ ((( deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))))
10099rspcev 3282 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝐽 ∧ ((( deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))) → ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
10191, 92, 93, 100syl12anc 1316 . . . . . . . . . . . . . . . . . . 19 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
102 fvex 6113 . . . . . . . . . . . . . . . . . . . 20 ((coe1𝑑)‘𝑏) ∈ V
103 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ((coe1𝑑)‘𝑏) → (𝑐 = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
104103anbi2d 736 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ((coe1𝑑)‘𝑏) → (((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
105104rexbidv 3034 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
106102, 105elab 3319 . . . . . . . . . . . . . . . . . . 19 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
107101, 106sylibr 223 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
108107adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
10990, 108sseldd 3569 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
110104rexbidv 3034 . . . . . . . . . . . . . . . . . 18 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
111102, 110elab 3319 . . . . . . . . . . . . . . . . 17 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
112 simpll2 1094 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝜑)
113112, 56syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Ring)
114 ringgrp 18375 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Grp)
116112, 6syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽 ⊆ (Base‘𝑃))
117 simplrl 796 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐽)
118116, 117sseldd 3569 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑 ∈ (Base‘𝑃))
1193, 4lidlss 19031 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
12057, 119syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐼 ⊆ (Base‘𝑃))
121112, 120syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼 ⊆ (Base‘𝑃))
122 simprl 790 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐼)
123121, 122sseldd 3569 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒 ∈ (Base‘𝑃))
124 eqid 2610 . . . . . . . . . . . . . . . . . . . . 21 (+g𝑃) = (+g𝑃)
125 eqid 2610 . . . . . . . . . . . . . . . . . . . . 21 (-g𝑃) = (-g𝑃)
1263, 124, 125grpnpcan 17330 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ Grp ∧ 𝑑 ∈ (Base‘𝑃) ∧ 𝑒 ∈ (Base‘𝑃)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
127115, 118, 123, 126syl3anc 1318 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
128573ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝑈)
129128ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝑈)
130 simpll1 1093 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑏 ∈ ℕ0)
131112, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑅 ∈ Ring)
132 simplrr 797 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘𝑑) ≤ 𝑏)
133 simprrl 800 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘𝑒) ≤ 𝑏)
134 eqid 2610 . . . . . . . . . . . . . . . . . . . . . 22 (coe1𝑑) = (coe1𝑑)
135 eqid 2610 . . . . . . . . . . . . . . . . . . . . . 22 (coe1𝑒) = (coe1𝑒)
136 simprrr 801 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))
1378, 9, 3, 125, 130, 131, 118, 132, 123, 133, 134, 135, 136deg1sublt 23674 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏)
138112, 2syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽𝑈)
13913ad2ant2 1076 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝐽)
140139ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝐽)
141140, 122sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐽)
1424, 125lidlsubcl 19037 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ Ring ∧ 𝐽𝑈) ∧ (𝑑𝐽𝑒𝐽)) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
143113, 138, 117, 141, 142syl22anc 1319 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
144 simpll3 1095 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
145 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = (𝑑(-g𝑃)𝑒) → (( deg1𝑅)‘𝑎) = (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)))
146145breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑑(-g𝑃)𝑒) → ((( deg1𝑅)‘𝑎) < 𝑏 ↔ (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏))
147 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑑(-g𝑃)𝑒) → (𝑎𝐼 ↔ (𝑑(-g𝑃)𝑒) ∈ 𝐼))
148146, 147imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (𝑑(-g𝑃)𝑒) → (((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) ↔ ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼)))
149148rspcva 3280 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑(-g𝑃)𝑒) ∈ 𝐽 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
150143, 144, 149syl2anc 691 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
151137, 150mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐼)
1524, 124lidlacl 19034 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑑(-g𝑃)𝑒) ∈ 𝐼𝑒𝐼)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
153113, 129, 151, 122, 152syl22anc 1319 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
154127, 153eqeltrrd 2689 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐼)
155154rexlimdvaa 3014 . . . . . . . . . . . . . . . . 17 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → (∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) → 𝑑𝐼))
156111, 155syl5bi 231 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} → 𝑑𝐼))
157109, 156mpd 15 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → 𝑑𝐼)
158157expr 641 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) ≤ 𝑏𝑑𝐼))
15972, 158sylbid 229 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
160159ralrimiva 2949 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
1611603exp 1256 . . . . . . . . . . 11 (𝑏 ∈ ℕ0 → (𝜑 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
162161a2d 29 . . . . . . . . . 10 (𝑏 ∈ ℕ0 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → (𝜑 → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
16335, 39, 49, 39, 64, 162nn0ind 11348 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
164 rsp 2913 . . . . . . . . 9 (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → (𝑎𝐽 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
165163, 164syl6com 36 . . . . . . . 8 (𝜑 → (𝑏 ∈ ℕ0 → (𝑎𝐽 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
166165com23 84 . . . . . . 7 (𝜑 → (𝑎𝐽 → (𝑏 ∈ ℕ0 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
167166imp 444 . . . . . 6 ((𝜑𝑎𝐽) → (𝑏 ∈ ℕ0 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
168167rexlimdv 3012 . . . . 5 ((𝜑𝑎𝐽) → (∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
16931, 168mpd 15 . . . 4 ((𝜑𝑎𝐽) → 𝑎𝐼)
170169ex 449 . . 3 (𝜑 → (𝑎𝐽𝑎𝐼))
171170ssrdv 3574 . 2 (𝜑𝐽𝐼)
1721, 171eqssd 3585 1 (𝜑𝐼 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  cun 3538  wss 3540  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  -∞cmnf 9951   < clt 9953  cle 9954  cn 10897  0cn0 11169  cz 11254  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  -gcsg 17247  Ringcrg 18370  LIdealclidl 18991  Poly1cpl1 19368  coe1cco1 19369   deg1 cdg1 23618  ldgIdlSeqcldgis 36710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rlreg 19104  df-psr 19177  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-ply1 19373  df-coe1 19374  df-cnfld 19568  df-mdeg 23619  df-deg1 23620  df-ldgis 36711
This theorem is referenced by:  hbt  36719
  Copyright terms: Public domain W3C validator