Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem2 Structured version   Visualization version   GIF version

Theorem hbtlem2 36713
Description: Leading coefficient ideals are ideals. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem2.t 𝑇 = (LIdeal‘𝑅)
Assertion
Ref Expression
hbtlem2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) ∈ 𝑇)

Proof of Theorem hbtlem2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem.p . . 3 𝑃 = (Poly1𝑅)
2 hbtlem.u . . 3 𝑈 = (LIdeal‘𝑃)
3 hbtlem.s . . 3 𝑆 = (ldgIdlSeq‘𝑅)
4 eqid 2610 . . 3 ( deg1𝑅) = ( deg1𝑅)
51, 2, 3, 4hbtlem1 36712 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
6 eqid 2610 . . . . . . . . . . . 12 (Base‘𝑃) = (Base‘𝑃)
76, 2lidlss 19031 . . . . . . . . . . 11 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
873ad2ant2 1076 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝐼 ⊆ (Base‘𝑃))
98sselda 3568 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → 𝑏 ∈ (Base‘𝑃))
10 eqid 2610 . . . . . . . . . 10 (coe1𝑏) = (coe1𝑏)
11 eqid 2610 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1210, 6, 1, 11coe1f 19402 . . . . . . . . 9 (𝑏 ∈ (Base‘𝑃) → (coe1𝑏):ℕ0⟶(Base‘𝑅))
139, 12syl 17 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → (coe1𝑏):ℕ0⟶(Base‘𝑅))
14 simpl3 1059 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → 𝑋 ∈ ℕ0)
1513, 14ffvelrnd 6268 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → ((coe1𝑏)‘𝑋) ∈ (Base‘𝑅))
16 eleq1a 2683 . . . . . . 7 (((coe1𝑏)‘𝑋) ∈ (Base‘𝑅) → (𝑎 = ((coe1𝑏)‘𝑋) → 𝑎 ∈ (Base‘𝑅)))
1715, 16syl 17 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → (𝑎 = ((coe1𝑏)‘𝑋) → 𝑎 ∈ (Base‘𝑅)))
1817adantld 482 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑏𝐼) → (((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → 𝑎 ∈ (Base‘𝑅)))
1918rexlimdva 3013 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) → 𝑎 ∈ (Base‘𝑅)))
2019abssdv 3639 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ⊆ (Base‘𝑅))
211ply1ring 19439 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
22213ad2ant1 1075 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝑃 ∈ Ring)
23 simp2 1055 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝐼𝑈)
24 eqid 2610 . . . . . . . 8 (0g𝑃) = (0g𝑃)
252, 24lidl0cl 19033 . . . . . . 7 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
2622, 23, 25syl2anc 691 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (0g𝑃) ∈ 𝐼)
274, 1, 24deg1z 23651 . . . . . . . 8 (𝑅 ∈ Ring → (( deg1𝑅)‘(0g𝑃)) = -∞)
28273ad2ant1 1075 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (( deg1𝑅)‘(0g𝑃)) = -∞)
29 nn0ssre 11173 . . . . . . . . . 10 0 ⊆ ℝ
30 ressxr 9962 . . . . . . . . . 10 ℝ ⊆ ℝ*
3129, 30sstri 3577 . . . . . . . . 9 0 ⊆ ℝ*
32 simp3 1056 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝑋 ∈ ℕ0)
3331, 32sseldi 3566 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → 𝑋 ∈ ℝ*)
34 mnfle 11845 . . . . . . . 8 (𝑋 ∈ ℝ* → -∞ ≤ 𝑋)
3533, 34syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → -∞ ≤ 𝑋)
3628, 35eqbrtrd 4605 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (( deg1𝑅)‘(0g𝑃)) ≤ 𝑋)
37 eqid 2610 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
381, 24, 37coe1z 19454 . . . . . . . . 9 (𝑅 ∈ Ring → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
39383ad2ant1 1075 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (coe1‘(0g𝑃)) = (ℕ0 × {(0g𝑅)}))
4039fveq1d 6105 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((coe1‘(0g𝑃))‘𝑋) = ((ℕ0 × {(0g𝑅)})‘𝑋))
41 fvex 6113 . . . . . . . . 9 (0g𝑅) ∈ V
4241fvconst2 6374 . . . . . . . 8 (𝑋 ∈ ℕ0 → ((ℕ0 × {(0g𝑅)})‘𝑋) = (0g𝑅))
43423ad2ant3 1077 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((ℕ0 × {(0g𝑅)})‘𝑋) = (0g𝑅))
4440, 43eqtr2d 2645 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋))
45 fveq2 6103 . . . . . . . . 9 (𝑏 = (0g𝑃) → (( deg1𝑅)‘𝑏) = (( deg1𝑅)‘(0g𝑃)))
4645breq1d 4593 . . . . . . . 8 (𝑏 = (0g𝑃) → ((( deg1𝑅)‘𝑏) ≤ 𝑋 ↔ (( deg1𝑅)‘(0g𝑃)) ≤ 𝑋))
47 fveq2 6103 . . . . . . . . . 10 (𝑏 = (0g𝑃) → (coe1𝑏) = (coe1‘(0g𝑃)))
4847fveq1d 6105 . . . . . . . . 9 (𝑏 = (0g𝑃) → ((coe1𝑏)‘𝑋) = ((coe1‘(0g𝑃))‘𝑋))
4948eqeq2d 2620 . . . . . . . 8 (𝑏 = (0g𝑃) → ((0g𝑅) = ((coe1𝑏)‘𝑋) ↔ (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋)))
5046, 49anbi12d 743 . . . . . . 7 (𝑏 = (0g𝑃) → (((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)) ↔ ((( deg1𝑅)‘(0g𝑃)) ≤ 𝑋 ∧ (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋))))
5150rspcev 3282 . . . . . 6 (((0g𝑃) ∈ 𝐼 ∧ ((( deg1𝑅)‘(0g𝑃)) ≤ 𝑋 ∧ (0g𝑅) = ((coe1‘(0g𝑃))‘𝑋))) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)))
5226, 36, 44, 51syl12anc 1316 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)))
53 eqeq1 2614 . . . . . . . 8 (𝑎 = (0g𝑅) → (𝑎 = ((coe1𝑏)‘𝑋) ↔ (0g𝑅) = ((coe1𝑏)‘𝑋)))
5453anbi2d 736 . . . . . . 7 (𝑎 = (0g𝑅) → (((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋))))
5554rexbidv 3034 . . . . . 6 (𝑎 = (0g𝑅) → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋))))
5641, 55elab 3319 . . . . 5 ((0g𝑅) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ (0g𝑅) = ((coe1𝑏)‘𝑋)))
5752, 56sylibr 223 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (0g𝑅) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
58 ne0i 3880 . . . 4 ((0g𝑅) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} → {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ≠ ∅)
5957, 58syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ≠ ∅)
6022adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑃 ∈ Ring)
61 simpl2 1058 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝐼𝑈)
62 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (algSc‘𝑃) = (algSc‘𝑃)
631, 62, 11, 6ply1sclf 19476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑅 ∈ Ring → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
64633ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
6564adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → (algSc‘𝑃):(Base‘𝑅)⟶(Base‘𝑃))
66 simprl 790 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑐 ∈ (Base‘𝑅))
6765, 66ffvelrnd 6268 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃))
68 simprll 798 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋))) → 𝑓𝐼)
6968adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑓𝐼)
70 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . 24 (.r𝑃) = (.r𝑃)
712, 6, 70lidlmcl 19038 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃) ∧ 𝑓𝐼)) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ 𝐼)
7260, 61, 67, 69, 71syl22anc 1319 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ 𝐼)
73 simprrl 800 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋))) → 𝑔𝐼)
7473adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑔𝐼)
75 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . 23 (+g𝑃) = (+g𝑃)
762, 75lidlacl 19034 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ 𝐼𝑔𝐼)) → ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) ∈ 𝐼)
7760, 61, 72, 74, 76syl22anc 1319 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) ∈ 𝐼)
78 simpl1 1057 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑅 ∈ Ring)
798adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝐼 ⊆ (Base‘𝑃))
8079, 69sseldd 3569 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑓 ∈ (Base‘𝑃))
816, 70ringcl 18384 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ Ring ∧ ((algSc‘𝑃)‘𝑐) ∈ (Base‘𝑃) ∧ 𝑓 ∈ (Base‘𝑃)) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃))
8260, 67, 80, 81syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃))
8379, 74sseldd 3569 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑔 ∈ (Base‘𝑃))
84 simpl3 1059 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑋 ∈ ℕ0)
8531, 84sseldi 3566 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → 𝑋 ∈ ℝ*)
864, 1, 6deg1xrcl 23646 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃) → (( deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ∈ ℝ*)
8782, 86syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ∈ ℝ*)
884, 1, 6deg1xrcl 23646 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ (Base‘𝑃) → (( deg1𝑅)‘𝑓) ∈ ℝ*)
8980, 88syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1𝑅)‘𝑓) ∈ ℝ*)
904, 1, 11, 6, 70, 62deg1mul3le 23680 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑃)) → (( deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ≤ (( deg1𝑅)‘𝑓))
9178, 66, 80, 90syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ≤ (( deg1𝑅)‘𝑓))
92 simprlr 799 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋))) → (( deg1𝑅)‘𝑓) ≤ 𝑋)
9392adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1𝑅)‘𝑓) ≤ 𝑋)
9487, 89, 85, 91, 93xrletrd 11869 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1𝑅)‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)) ≤ 𝑋)
95 simprrr 801 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋))) → (( deg1𝑅)‘𝑔) ≤ 𝑋)
9695adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1𝑅)‘𝑔) ≤ 𝑋)
971, 4, 78, 6, 75, 82, 83, 85, 94, 96deg1addle2 23666 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → (( deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋)
98 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . 24 (+g𝑅) = (+g𝑅)
991, 6, 75, 98coe1addfv 19456 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ (((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓) ∈ (Base‘𝑃) ∧ 𝑔 ∈ (Base‘𝑃)) ∧ 𝑋 ∈ ℕ0) → ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋) = (((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋)(+g𝑅)((coe1𝑔)‘𝑋)))
10078, 82, 83, 84, 99syl31anc 1321 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋) = (((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋)(+g𝑅)((coe1𝑔)‘𝑋)))
101 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . 25 (.r𝑅) = (.r𝑅)
1021, 6, 11, 62, 70, 101coe1sclmulfv 19474 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ Ring ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑓 ∈ (Base‘𝑃)) ∧ 𝑋 ∈ ℕ0) → ((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋) = (𝑐(.r𝑅)((coe1𝑓)‘𝑋)))
10378, 66, 80, 84, 102syl121anc 1323 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋) = (𝑐(.r𝑅)((coe1𝑓)‘𝑋)))
104103oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → (((coe1‘(((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓))‘𝑋)(+g𝑅)((coe1𝑔)‘𝑋)) = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)))
105100, 104eqtr2d 2645 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))
106 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → (( deg1𝑅)‘𝑏) = (( deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)))
107106breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → ((( deg1𝑅)‘𝑏) ≤ 𝑋 ↔ (( deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋))
108 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → (coe1𝑏) = (coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)))
109108fveq1d 6105 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → ((coe1𝑏)‘𝑋) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))
110109eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → (((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋) ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋)))
111107, 110anbi12d 743 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = ((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) → (((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)) ↔ ((( deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))))
112111rspcev 3282 . . . . . . . . . . . . . . . . . . . . 21 ((((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔) ∈ 𝐼 ∧ ((( deg1𝑅)‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔)) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1‘((((algSc‘𝑃)‘𝑐)(.r𝑃)𝑓)(+g𝑃)𝑔))‘𝑋))) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
11377, 97, 105, 112syl12anc 1316 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
114 ovex 6577 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ V
115 eqeq1 2614 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) → (𝑎 = ((coe1𝑏)‘𝑋) ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
116115anbi2d 736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) → (((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋))))
117116rexbidv 3034 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋))))
118114, 117elab 3319 . . . . . . . . . . . . . . . . . . . 20 (((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋 ∧ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) = ((coe1𝑏)‘𝑋)))
119113, 118sylibr 223 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ (𝑐 ∈ (Base‘𝑅) ∧ ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ (𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋)))) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
120119exp45 640 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → (𝑐 ∈ (Base‘𝑅) → ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) → ((𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))))
121120imp 444 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ((𝑓𝐼 ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) → ((𝑔𝐼 ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})))
122121exp5c 642 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → (𝑓𝐼 → ((( deg1𝑅)‘𝑓) ≤ 𝑋 → (𝑔𝐼 → ((( deg1𝑅)‘𝑔) ≤ 𝑋 → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})))))
123122imp 444 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) → ((( deg1𝑅)‘𝑓) ≤ 𝑋 → (𝑔𝐼 → ((( deg1𝑅)‘𝑔) ≤ 𝑋 → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))))
124123imp41 617 . . . . . . . . . . . . . 14 (((((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔𝐼) ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
125 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑒 = ((coe1𝑔)‘𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)))
126125eleq1d 2672 . . . . . . . . . . . . . 14 (𝑒 = ((coe1𝑔)‘𝑋) → (((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)((coe1𝑔)‘𝑋)) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
127124, 126syl5ibrcom 236 . . . . . . . . . . . . 13 (((((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔𝐼) ∧ (( deg1𝑅)‘𝑔) ≤ 𝑋) → (𝑒 = ((coe1𝑔)‘𝑋) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
128127expimpd 627 . . . . . . . . . . . 12 ((((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) ∧ 𝑔𝐼) → (((( deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
129128rexlimdva 3013 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) → (∃𝑔𝐼 ((( deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
130129alrimiv 1842 . . . . . . . . . 10 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) → ∀𝑒(∃𝑔𝐼 ((( deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
131 eqeq1 2614 . . . . . . . . . . . . . 14 (𝑎 = 𝑒 → (𝑎 = ((coe1𝑏)‘𝑋) ↔ 𝑒 = ((coe1𝑏)‘𝑋)))
132131anbi2d 736 . . . . . . . . . . . . 13 (𝑎 = 𝑒 → (((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))))
133132rexbidv 3034 . . . . . . . . . . . 12 (𝑎 = 𝑒 → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋))))
134 fveq2 6103 . . . . . . . . . . . . . . 15 (𝑏 = 𝑔 → (( deg1𝑅)‘𝑏) = (( deg1𝑅)‘𝑔))
135134breq1d 4593 . . . . . . . . . . . . . 14 (𝑏 = 𝑔 → ((( deg1𝑅)‘𝑏) ≤ 𝑋 ↔ (( deg1𝑅)‘𝑔) ≤ 𝑋))
136 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑔 → (coe1𝑏) = (coe1𝑔))
137136fveq1d 6105 . . . . . . . . . . . . . . 15 (𝑏 = 𝑔 → ((coe1𝑏)‘𝑋) = ((coe1𝑔)‘𝑋))
138137eqeq2d 2620 . . . . . . . . . . . . . 14 (𝑏 = 𝑔 → (𝑒 = ((coe1𝑏)‘𝑋) ↔ 𝑒 = ((coe1𝑔)‘𝑋)))
139135, 138anbi12d 743 . . . . . . . . . . . . 13 (𝑏 = 𝑔 → (((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋)) ↔ ((( deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋))))
140139cbvrexv 3148 . . . . . . . . . . . 12 (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑒 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑔𝐼 ((( deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)))
141133, 140syl6bb 275 . . . . . . . . . . 11 (𝑎 = 𝑒 → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑔𝐼 ((( deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋))))
142141ralab 3334 . . . . . . . . . 10 (∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∀𝑒(∃𝑔𝐼 ((( deg1𝑅)‘𝑔) ≤ 𝑋𝑒 = ((coe1𝑔)‘𝑋)) → ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
143130, 142sylibr 223 . . . . . . . . 9 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
144 oveq2 6557 . . . . . . . . . . . 12 (𝑑 = ((coe1𝑓)‘𝑋) → (𝑐(.r𝑅)𝑑) = (𝑐(.r𝑅)((coe1𝑓)‘𝑋)))
145144oveq1d 6564 . . . . . . . . . . 11 (𝑑 = ((coe1𝑓)‘𝑋) → ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) = ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒))
146145eleq1d 2672 . . . . . . . . . 10 (𝑑 = ((coe1𝑓)‘𝑋) → (((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
147146ralbidv 2969 . . . . . . . . 9 (𝑑 = ((coe1𝑓)‘𝑋) → (∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)((coe1𝑓)‘𝑋))(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
148143, 147syl5ibrcom 236 . . . . . . . 8 (((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) ∧ (( deg1𝑅)‘𝑓) ≤ 𝑋) → (𝑑 = ((coe1𝑓)‘𝑋) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
149148expimpd 627 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) ∧ 𝑓𝐼) → (((( deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
150149rexlimdva 3013 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → (∃𝑓𝐼 ((( deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
151150alrimiv 1842 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ∀𝑑(∃𝑓𝐼 ((( deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
152 eqeq1 2614 . . . . . . . . 9 (𝑎 = 𝑑 → (𝑎 = ((coe1𝑏)‘𝑋) ↔ 𝑑 = ((coe1𝑏)‘𝑋)))
153152anbi2d 736 . . . . . . . 8 (𝑎 = 𝑑 → (((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))))
154153rexbidv 3034 . . . . . . 7 (𝑎 = 𝑑 → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋))))
155 fveq2 6103 . . . . . . . . . 10 (𝑏 = 𝑓 → (( deg1𝑅)‘𝑏) = (( deg1𝑅)‘𝑓))
156155breq1d 4593 . . . . . . . . 9 (𝑏 = 𝑓 → ((( deg1𝑅)‘𝑏) ≤ 𝑋 ↔ (( deg1𝑅)‘𝑓) ≤ 𝑋))
157 fveq2 6103 . . . . . . . . . . 11 (𝑏 = 𝑓 → (coe1𝑏) = (coe1𝑓))
158157fveq1d 6105 . . . . . . . . . 10 (𝑏 = 𝑓 → ((coe1𝑏)‘𝑋) = ((coe1𝑓)‘𝑋))
159158eqeq2d 2620 . . . . . . . . 9 (𝑏 = 𝑓 → (𝑑 = ((coe1𝑏)‘𝑋) ↔ 𝑑 = ((coe1𝑓)‘𝑋)))
160156, 159anbi12d 743 . . . . . . . 8 (𝑏 = 𝑓 → (((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋)) ↔ ((( deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋))))
161160cbvrexv 3148 . . . . . . 7 (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑑 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑓𝐼 ((( deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)))
162154, 161syl6bb 275 . . . . . 6 (𝑎 = 𝑑 → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋)) ↔ ∃𝑓𝐼 ((( deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋))))
163162ralab 3334 . . . . 5 (∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ↔ ∀𝑑(∃𝑓𝐼 ((( deg1𝑅)‘𝑓) ≤ 𝑋𝑑 = ((coe1𝑓)‘𝑋)) → ∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
164151, 163sylibr 223 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) ∧ 𝑐 ∈ (Base‘𝑅)) → ∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
165164ralrimiva 2949 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ∀𝑐 ∈ (Base‘𝑅)∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))})
166 hbtlem2.t . . . 4 𝑇 = (LIdeal‘𝑅)
167166, 11, 98, 101islidl 19032 . . 3 ({𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ∈ 𝑇 ↔ ({𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ⊆ (Base‘𝑅) ∧ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ≠ ∅ ∧ ∀𝑐 ∈ (Base‘𝑅)∀𝑑 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}∀𝑒 ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ((𝑐(.r𝑅)𝑑)(+g𝑅)𝑒) ∈ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))}))
16820, 59, 165, 167syl3anbrc 1239 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑋𝑎 = ((coe1𝑏)‘𝑋))} ∈ 𝑇)
1695, 168eqeltrd 2688 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  wss 3540  c0 3874  {csn 4125   class class class wbr 4583   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  -∞cmnf 9951  *cxr 9952  cle 9954  0cn0 11169  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  0gc0g 15923  Ringcrg 18370  LIdealclidl 18991  algSccascl 19132  Poly1cpl1 19368  coe1cco1 19369   deg1 cdg1 23618  ldgIdlSeqcldgis 36710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-ofr 6796  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-ascl 19135  df-psr 19177  df-mvr 19178  df-mpl 19179  df-opsr 19181  df-psr1 19371  df-vr1 19372  df-ply1 19373  df-coe1 19374  df-cnfld 19568  df-mdeg 23619  df-deg1 23620  df-ldgis 36711
This theorem is referenced by:  hbtlem7  36714  hbtlem6  36718
  Copyright terms: Public domain W3C validator