MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpnnncan2 Structured version   Visualization version   GIF version

Theorem grpnnncan2 17335
Description: Cancellation law for group subtraction. (nnncan2 10197 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
grpnnncan2.b 𝐵 = (Base‘𝐺)
grpnnncan2.m = (-g𝐺)
Assertion
Ref Expression
grpnnncan2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 𝑌))

Proof of Theorem grpnnncan2
StepHypRef Expression
1 simpl 472 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐺 ∈ Grp)
2 simpr1 1060 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
3 simpr3 1062 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
4 grpnnncan2.b . . . . 5 𝐵 = (Base‘𝐺)
5 grpnnncan2.m . . . . 5 = (-g𝐺)
64, 5grpsubcl 17318 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
763adant3r1 1266 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
8 eqid 2610 . . . 4 (+g𝐺) = (+g𝐺)
94, 8, 5grpsubsub4 17331 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑍𝐵 ∧ (𝑌 𝑍) ∈ 𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)))
101, 2, 3, 7, 9syl13anc 1320 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)))
114, 8, 5grpnpcan 17330 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵𝑍𝐵) → ((𝑌 𝑍)(+g𝐺)𝑍) = 𝑌)
12113adant3r1 1266 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍)(+g𝐺)𝑍) = 𝑌)
1312oveq2d 6565 . 2 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 ((𝑌 𝑍)(+g𝐺)𝑍)) = (𝑋 𝑌))
1410, 13eqtrd 2644 1 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑍) (𝑌 𝑍)) = (𝑋 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245  -gcsg 17247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250
This theorem is referenced by:  2idlcpbl  19055  nrmmetd  22189  ttgcontlem1  25565
  Copyright terms: Public domain W3C validator