Step | Hyp | Ref
| Expression |
1 | | simp2 1055 |
. . 3
⊢ ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → 𝐵 ≠ ∅) |
2 | | n0 3890 |
. . 3
⊢ (𝐵 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝐵) |
3 | 1, 2 | sylib 207 |
. 2
⊢ ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑤 𝑤 ∈ 𝐵) |
4 | | oveq2 6557 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝑙 + 𝑥) = (𝑙 + 𝑤)) |
5 | 4 | eqeq1d 2612 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑦)) |
6 | 5 | rexbidv 3034 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦)) |
7 | | oveq1 6556 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → (𝑥 + 𝑟) = (𝑤 + 𝑟)) |
8 | 7 | eqeq1d 2612 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑦)) |
9 | 8 | rexbidv 3034 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦)) |
10 | 6, 9 | anbi12d 743 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦))) |
11 | 10 | ralbidv 2969 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦))) |
12 | 11 | rspcv 3278 |
. . . . . . 7
⊢ (𝑤 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦))) |
13 | | eqeq2 2621 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑤)) |
14 | 13 | rexbidv 3034 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑤)) |
15 | | eqeq2 2621 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑤 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑤)) |
16 | 15 | rexbidv 3034 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤)) |
17 | 14, 16 | anbi12d 743 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤))) |
18 | 17 | rspcva 3280 |
. . . . . . . . 9
⊢ ((𝑤 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤)) |
19 | | oveq1 6556 |
. . . . . . . . . . . . 13
⊢ (𝑙 = 𝑢 → (𝑙 + 𝑤) = (𝑢 + 𝑤)) |
20 | 19 | eqeq1d 2612 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑢 → ((𝑙 + 𝑤) = 𝑤 ↔ (𝑢 + 𝑤) = 𝑤)) |
21 | 20 | cbvrexv 3148 |
. . . . . . . . . . 11
⊢
(∃𝑙 ∈
𝐵 (𝑙 + 𝑤) = 𝑤 ↔ ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
22 | 21 | biimpi 205 |
. . . . . . . . . 10
⊢
(∃𝑙 ∈
𝐵 (𝑙 + 𝑤) = 𝑤 → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
23 | 22 | adantr 480 |
. . . . . . . . 9
⊢
((∃𝑙 ∈
𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
24 | 18, 23 | syl 17 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
25 | 24 | ex 449 |
. . . . . . 7
⊢ (𝑤 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤)) |
26 | 12, 25 | syld 46 |
. . . . . 6
⊢ (𝑤 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤)) |
27 | 26 | com12 32 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → (𝑤 ∈ 𝐵 → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤)) |
28 | 27 | 3ad2ant3 1077 |
. . . 4
⊢ ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → (𝑤 ∈ 𝐵 → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤)) |
29 | 28 | imp 444 |
. . 3
⊢ (((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
30 | | eqeq2 2621 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑎 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑎)) |
31 | 30 | rexbidv 3034 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑎)) |
32 | | eqeq2 2621 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑎 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑎)) |
33 | 32 | rexbidv 3034 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
34 | 31, 33 | anbi12d 743 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎))) |
35 | 10, 34 | rspc2va 3294 |
. . . . . . . . . . . . 13
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
36 | 35 | simprd 478 |
. . . . . . . . . . . 12
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎) |
37 | 36 | expcom 450 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
38 | 37 | 3ad2ant3 1077 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
39 | 38 | impl 648 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎) |
40 | 39 | ad2ant2r 779 |
. . . . . . . 8
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎) |
41 | | oveq2 6557 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑧 → (𝑤 + 𝑟) = (𝑤 + 𝑧)) |
42 | 41 | eqeq1d 2612 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑧 → ((𝑤 + 𝑟) = 𝑎 ↔ (𝑤 + 𝑧) = 𝑎)) |
43 | 42 | cbvrexv 3148 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
𝐵 (𝑤 + 𝑟) = 𝑎 ↔ ∃𝑧 ∈ 𝐵 (𝑤 + 𝑧) = 𝑎) |
44 | | simpll1 1093 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝐺 ∈ SGrp) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝐺 ∈ SGrp) |
46 | | simplr 788 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝑢 ∈ 𝐵) |
47 | | simpllr 795 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
48 | | simprr 792 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
49 | | dfgrp3.b |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = (Base‘𝐺) |
50 | | dfgrp3.p |
. . . . . . . . . . . . . . . 16
⊢ + =
(+g‘𝐺) |
51 | 49, 50 | sgrpass 17113 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ SGrp ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧))) |
52 | 45, 46, 47, 48, 51 | syl13anc 1320 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧))) |
53 | | simprl 790 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → (𝑢 + 𝑤) = 𝑤) |
54 | 53 | oveq1d 6564 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑤 + 𝑧)) |
55 | 52, 54 | eqtr3d 2646 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧)) |
56 | 55 | anassrs 678 |
. . . . . . . . . . . 12
⊢
((((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧 ∈ 𝐵) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧)) |
57 | | oveq2 6557 |
. . . . . . . . . . . . 13
⊢ ((𝑤 + 𝑧) = 𝑎 → (𝑢 + (𝑤 + 𝑧)) = (𝑢 + 𝑎)) |
58 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑤 + 𝑧) = 𝑎 → (𝑤 + 𝑧) = 𝑎) |
59 | 57, 58 | eqeq12d 2625 |
. . . . . . . . . . . 12
⊢ ((𝑤 + 𝑧) = 𝑎 → ((𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧) ↔ (𝑢 + 𝑎) = 𝑎)) |
60 | 56, 59 | syl5ibcom 234 |
. . . . . . . . . . 11
⊢
((((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧 ∈ 𝐵) → ((𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
61 | 60 | rexlimdva 3013 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑧 ∈ 𝐵 (𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
62 | 43, 61 | syl5bi 231 |
. . . . . . . . 9
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
63 | 62 | adantrl 748 |
. . . . . . . 8
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
64 | 40, 63 | mpd 15 |
. . . . . . 7
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (𝑢 + 𝑎) = 𝑎) |
65 | | oveq2 6557 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (𝑙 + 𝑥) = (𝑙 + 𝑎)) |
66 | 65 | eqeq1d 2612 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑦)) |
67 | 66 | rexbidv 3034 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦)) |
68 | | oveq1 6556 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (𝑥 + 𝑟) = (𝑎 + 𝑟)) |
69 | 68 | eqeq1d 2612 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑦)) |
70 | 69 | rexbidv 3034 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦)) |
71 | 67, 70 | anbi12d 743 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦))) |
72 | | eqeq2 2621 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑢 → ((𝑙 + 𝑎) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑢)) |
73 | 72 | rexbidv 3034 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑢 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
74 | | eqeq2 2621 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑢 → ((𝑎 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑢)) |
75 | 74 | rexbidv 3034 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑢 → (∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑢)) |
76 | 73, 75 | anbi12d 743 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑢 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑢))) |
77 | 71, 76 | rspc2va 3294 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑢)) |
78 | 77 | simpld 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢) |
79 | 78 | ex 449 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
80 | 79 | ancoms 468 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
81 | 80 | com12 32 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
82 | 81 | 3ad2ant3 1077 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
83 | 82 | impl 648 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢) |
84 | | oveq1 6556 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑖 → (𝑙 + 𝑎) = (𝑖 + 𝑎)) |
85 | 84 | eqeq1d 2612 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑖 → ((𝑙 + 𝑎) = 𝑢 ↔ (𝑖 + 𝑎) = 𝑢)) |
86 | 85 | cbvrexv 3148 |
. . . . . . . . . 10
⊢
(∃𝑙 ∈
𝐵 (𝑙 + 𝑎) = 𝑢 ↔ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
87 | 83, 86 | sylib 207 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
88 | 87 | adantllr 751 |
. . . . . . . 8
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
89 | 88 | adantrr 749 |
. . . . . . 7
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
90 | 64, 89 | jca 553 |
. . . . . 6
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |
91 | 90 | expr 641 |
. . . . 5
⊢
(((((𝐺 ∈ SGrp
∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ((𝑢 + 𝑤) = 𝑤 → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) |
92 | 91 | ralrimdva 2952 |
. . . 4
⊢ ((((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((𝑢 + 𝑤) = 𝑤 → ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) |
93 | 92 | reximdva 3000 |
. . 3
⊢ (((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) → (∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤 → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) |
94 | 29, 93 | mpd 15 |
. 2
⊢ (((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |
95 | 3, 94 | exlimddv 1850 |
1
⊢ ((𝐺 ∈ SGrp ∧ 𝐵 ≠ ∅ ∧
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |