Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fv2ndcnv Structured version   Visualization version   GIF version

Theorem fv2ndcnv 30926
Description: The value of the converse of 2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
Assertion
Ref Expression
fv2ndcnv ((𝑋𝑉𝑌𝐴) → ((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩)

Proof of Theorem fv2ndcnv
StepHypRef Expression
1 snidg 4153 . . . 4 (𝑋𝑉𝑋 ∈ {𝑋})
21anim1i 590 . . 3 ((𝑋𝑉𝑌𝐴) → (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))
3 eqid 2610 . . 3 𝑌 = 𝑌
42, 3jctil 558 . 2 ((𝑋𝑉𝑌𝐴) → (𝑌 = 𝑌 ∧ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴)))
5 2ndconst 7153 . . . . . 6 (𝑋𝑉 → (2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴)
65adantr 480 . . . . 5 ((𝑋𝑉𝑌𝐴) → (2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴)
7 f1ocnv 6062 . . . . 5 ((2nd ↾ ({𝑋} × 𝐴)):({𝑋} × 𝐴)–1-1-onto𝐴(2nd ↾ ({𝑋} × 𝐴)):𝐴1-1-onto→({𝑋} × 𝐴))
8 f1ofn 6051 . . . . 5 ((2nd ↾ ({𝑋} × 𝐴)):𝐴1-1-onto→({𝑋} × 𝐴) → (2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴)
96, 7, 83syl 18 . . . 4 ((𝑋𝑉𝑌𝐴) → (2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴)
10 fnbrfvb 6146 . . . 4 (((2nd ↾ ({𝑋} × 𝐴)) Fn 𝐴𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ 𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩))
119, 10sylancom 698 . . 3 ((𝑋𝑉𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ 𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩))
12 opex 4859 . . . . . 6 𝑋, 𝑌⟩ ∈ V
13 brcnvg 5225 . . . . . 6 ((𝑌𝐴 ∧ ⟨𝑋, 𝑌⟩ ∈ V) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
1412, 13mpan2 703 . . . . 5 (𝑌𝐴 → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
1514adantl 481 . . . 4 ((𝑋𝑉𝑌𝐴) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ ⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌))
16 brresg 5325 . . . . . 6 (𝑌𝐴 → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ (⟨𝑋, 𝑌⟩2nd 𝑌 ∧ ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴))))
1716adantl 481 . . . . 5 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ (⟨𝑋, 𝑌⟩2nd 𝑌 ∧ ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴))))
18 opelxp 5070 . . . . . . 7 (⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴) ↔ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))
1918anbi2i 726 . . . . . 6 ((⟨𝑋, 𝑌⟩2nd 𝑌 ∧ ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴)) ↔ (⟨𝑋, 𝑌⟩2nd 𝑌 ∧ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴)))
20 br2ndeqg 30920 . . . . . . . 8 ((𝑋𝑉𝑌𝐴𝑌𝐴) → (⟨𝑋, 𝑌⟩2nd 𝑌𝑌 = 𝑌))
21203anidm23 1377 . . . . . . 7 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩2nd 𝑌𝑌 = 𝑌))
2221anbi1d 737 . . . . . 6 ((𝑋𝑉𝑌𝐴) → ((⟨𝑋, 𝑌⟩2nd 𝑌 ∧ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴)) ↔ (𝑌 = 𝑌 ∧ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))))
2319, 22syl5bb 271 . . . . 5 ((𝑋𝑉𝑌𝐴) → ((⟨𝑋, 𝑌⟩2nd 𝑌 ∧ ⟨𝑋, 𝑌⟩ ∈ ({𝑋} × 𝐴)) ↔ (𝑌 = 𝑌 ∧ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))))
2417, 23bitrd 267 . . . 4 ((𝑋𝑉𝑌𝐴) → (⟨𝑋, 𝑌⟩(2nd ↾ ({𝑋} × 𝐴))𝑌 ↔ (𝑌 = 𝑌 ∧ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))))
2515, 24bitrd 267 . . 3 ((𝑋𝑉𝑌𝐴) → (𝑌(2nd ↾ ({𝑋} × 𝐴))⟨𝑋, 𝑌⟩ ↔ (𝑌 = 𝑌 ∧ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))))
2611, 25bitrd 267 . 2 ((𝑋𝑉𝑌𝐴) → (((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩ ↔ (𝑌 = 𝑌 ∧ (𝑋 ∈ {𝑋} ∧ 𝑌𝐴))))
274, 26mpbird 246 1 ((𝑋𝑉𝑌𝐴) → ((2nd ↾ ({𝑋} × 𝐴))‘𝑌) = ⟨𝑋, 𝑌⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  {csn 4125  cop 4131   class class class wbr 4583   × cxp 5036  ccnv 5037  cres 5040   Fn wfn 5799  1-1-ontowf1o 5803  cfv 5804  2nd c2nd 7058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1st 7059  df-2nd 7060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator