Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setinds Structured version   Visualization version   GIF version

Theorem setinds 30927
Description: Principle of E induction (set induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.)
Hypothesis
Ref Expression
setinds.1 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑)
Assertion
Ref Expression
setinds 𝜑
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem setinds
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 3176 . 2 𝑥 ∈ V
2 setind 8493 . . . . 5 (∀𝑧(𝑧 ⊆ {𝑥𝜑} → 𝑧 ∈ {𝑥𝜑}) → {𝑥𝜑} = V)
3 dfss3 3558 . . . . . . 7 (𝑧 ⊆ {𝑥𝜑} ↔ ∀𝑦𝑧 𝑦 ∈ {𝑥𝜑})
4 df-sbc 3403 . . . . . . . . 9 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
54ralbii 2963 . . . . . . . 8 (∀𝑦𝑧 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑧 𝑦 ∈ {𝑥𝜑})
6 nfcv 2751 . . . . . . . . . . 11 𝑥𝑧
7 nfsbc1v 3422 . . . . . . . . . . 11 𝑥[𝑦 / 𝑥]𝜑
86, 7nfral 2929 . . . . . . . . . 10 𝑥𝑦𝑧 [𝑦 / 𝑥]𝜑
9 nfsbc1v 3422 . . . . . . . . . 10 𝑥[𝑧 / 𝑥]𝜑
108, 9nfim 1813 . . . . . . . . 9 𝑥(∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
11 raleq 3115 . . . . . . . . . 10 (𝑥 = 𝑧 → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑧 [𝑦 / 𝑥]𝜑))
12 sbceq1a 3413 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
1311, 12imbi12d 333 . . . . . . . . 9 (𝑥 = 𝑧 → ((∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ↔ (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)))
14 setinds.1 . . . . . . . . 9 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑)
1510, 13, 14chvar 2250 . . . . . . . 8 (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
165, 15sylbir 224 . . . . . . 7 (∀𝑦𝑧 𝑦 ∈ {𝑥𝜑} → [𝑧 / 𝑥]𝜑)
173, 16sylbi 206 . . . . . 6 (𝑧 ⊆ {𝑥𝜑} → [𝑧 / 𝑥]𝜑)
18 df-sbc 3403 . . . . . 6 ([𝑧 / 𝑥]𝜑𝑧 ∈ {𝑥𝜑})
1917, 18sylib 207 . . . . 5 (𝑧 ⊆ {𝑥𝜑} → 𝑧 ∈ {𝑥𝜑})
202, 19mpg 1715 . . . 4 {𝑥𝜑} = V
2120eqcomi 2619 . . 3 V = {𝑥𝜑}
2221abeq2i 2722 . 2 (𝑥 ∈ V ↔ 𝜑)
231, 22mpbi 219 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  {cab 2596  wral 2896  Vcvv 3173  [wsbc 3402  wss 3540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393
This theorem is referenced by:  setinds2f  30928
  Copyright terms: Public domain W3C validator