Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fv2ndcnv Structured version   Visualization version   Unicode version

Theorem fv2ndcnv 30471
Description: The value of the converse of  2nd restricted to a singleton. (Contributed by Scott Fenton, 2-Jul-2020.)
Assertion
Ref Expression
fv2ndcnv  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( `' ( 2nd  |`  ( { X }  X.  A ) ) `  Y )  =  <. X ,  Y >. )

Proof of Theorem fv2ndcnv
StepHypRef Expression
1 snidg 4005 . . . 4  |-  ( X  e.  V  ->  X  e.  { X } )
21anim1i 576 . . 3  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( X  e.  { X }  /\  Y  e.  A ) )
3 eqid 2461 . . 3  |-  Y  =  Y
42, 3jctil 544 . 2  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( Y  =  Y  /\  ( X  e. 
{ X }  /\  Y  e.  A )
) )
5 2ndconst 6911 . . . . . 6  |-  ( X  e.  V  ->  ( 2nd  |`  ( { X }  X.  A ) ) : ( { X }  X.  A ) -1-1-onto-> A )
65adantr 471 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( 2nd  |`  ( { X }  X.  A
) ) : ( { X }  X.  A ) -1-1-onto-> A )
7 f1ocnv 5848 . . . . 5  |-  ( ( 2nd  |`  ( { X }  X.  A
) ) : ( { X }  X.  A ) -1-1-onto-> A  ->  `' ( 2nd  |`  ( { X }  X.  A ) ) : A -1-1-onto-> ( { X }  X.  A ) )
8 f1ofn 5837 . . . . 5  |-  ( `' ( 2nd  |`  ( { X }  X.  A
) ) : A -1-1-onto-> ( { X }  X.  A
)  ->  `' ( 2nd  |`  ( { X }  X.  A ) )  Fn  A )
96, 7, 83syl 18 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  `' ( 2nd  |`  ( { X }  X.  A
) )  Fn  A
)
10 fnbrfvb 5927 . . . 4  |-  ( ( `' ( 2nd  |`  ( { X }  X.  A
) )  Fn  A  /\  Y  e.  A
)  ->  ( ( `' ( 2nd  |`  ( { X }  X.  A
) ) `  Y
)  =  <. X ,  Y >. 
<->  Y `' ( 2nd  |`  ( { X }  X.  A ) ) <. X ,  Y >. ) )
119, 10sylancom 678 . . 3  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( ( `' ( 2nd  |`  ( { X }  X.  A
) ) `  Y
)  =  <. X ,  Y >. 
<->  Y `' ( 2nd  |`  ( { X }  X.  A ) ) <. X ,  Y >. ) )
12 opex 4677 . . . . . 6  |-  <. X ,  Y >.  e.  _V
13 brcnvg 5033 . . . . . 6  |-  ( ( Y  e.  A  /\  <. X ,  Y >.  e. 
_V )  ->  ( Y `' ( 2nd  |`  ( { X }  X.  A
) ) <. X ,  Y >. 
<-> 
<. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y ) )
1412, 13mpan2 682 . . . . 5  |-  ( Y  e.  A  ->  ( Y `' ( 2nd  |`  ( { X }  X.  A
) ) <. X ,  Y >. 
<-> 
<. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y ) )
1514adantl 472 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( Y `' ( 2nd  |`  ( { X }  X.  A
) ) <. X ,  Y >. 
<-> 
<. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y ) )
16 brresg 5131 . . . . . 6  |-  ( Y  e.  A  ->  ( <. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y  <->  ( <. X ,  Y >. 2nd Y  /\  <. X ,  Y >.  e.  ( { X }  X.  A ) ) ) )
1716adantl 472 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( <. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y  <->  ( <. X ,  Y >. 2nd Y  /\  <. X ,  Y >.  e.  ( { X }  X.  A ) ) ) )
18 opelxp 4882 . . . . . . 7  |-  ( <. X ,  Y >.  e.  ( { X }  X.  A )  <->  ( X  e.  { X }  /\  Y  e.  A )
)
1918anbi2i 705 . . . . . 6  |-  ( (
<. X ,  Y >. 2nd Y  /\  <. X ,  Y >.  e.  ( { X }  X.  A
) )  <->  ( <. X ,  Y >. 2nd Y  /\  ( X  e.  { X }  /\  Y  e.  A ) ) )
20 br2ndeqg 30465 . . . . . . . 8  |-  ( ( X  e.  V  /\  Y  e.  A  /\  Y  e.  A )  ->  ( <. X ,  Y >. 2nd Y  <->  Y  =  Y ) )
21203anidm23 1335 . . . . . . 7  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( <. X ,  Y >. 2nd Y  <->  Y  =  Y ) )
2221anbi1d 716 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( ( <. X ,  Y >. 2nd Y  /\  ( X  e.  { X }  /\  Y  e.  A
) )  <->  ( Y  =  Y  /\  ( X  e.  { X }  /\  Y  e.  A
) ) ) )
2319, 22syl5bb 265 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( ( <. X ,  Y >. 2nd Y  /\  <. X ,  Y >.  e.  ( { X }  X.  A ) )  <->  ( Y  =  Y  /\  ( X  e.  { X }  /\  Y  e.  A
) ) ) )
2417, 23bitrd 261 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( <. X ,  Y >. ( 2nd  |`  ( { X }  X.  A
) ) Y  <->  ( Y  =  Y  /\  ( X  e.  { X }  /\  Y  e.  A
) ) ) )
2515, 24bitrd 261 . . 3  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( Y `' ( 2nd  |`  ( { X }  X.  A
) ) <. X ,  Y >. 
<->  ( Y  =  Y  /\  ( X  e. 
{ X }  /\  Y  e.  A )
) ) )
2611, 25bitrd 261 . 2  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( ( `' ( 2nd  |`  ( { X }  X.  A
) ) `  Y
)  =  <. X ,  Y >. 
<->  ( Y  =  Y  /\  ( X  e. 
{ X }  /\  Y  e.  A )
) ) )
274, 26mpbird 240 1  |-  ( ( X  e.  V  /\  Y  e.  A )  ->  ( `' ( 2nd  |`  ( { X }  X.  A ) ) `  Y )  =  <. X ,  Y >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1454    e. wcel 1897   _Vcvv 3056   {csn 3979   <.cop 3985   class class class wbr 4415    X. cxp 4850   `'ccnv 4851    |` cres 4854    Fn wfn 5595   -1-1-onto->wf1o 5599   ` cfv 5600   2ndc2nd 6818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-1st 6819  df-2nd 6820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator