MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcf Structured version   Visualization version   GIF version

Theorem flimcf 21596
Description: Fineness is properly characterized by the property that every limit point of a filter in the finer topology is a limit point in the coarser topology. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
flimcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)))
Distinct variable groups:   𝑓,𝐽   𝑓,𝐾   𝑓,𝑋

Proof of Theorem flimcf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 794 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝐽 ∈ (TopOn‘𝑋))
2 simprl 790 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑓 ∈ (Fil‘𝑋))
3 simplr 788 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝐽𝐾)
4 flimss1 21587 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
51, 2, 3, 4syl3anc 1318 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
6 simprr 792 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑥 ∈ (𝐾 fLim 𝑓))
75, 6sseldd 3569 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ (𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ (𝐾 fLim 𝑓))) → 𝑥 ∈ (𝐽 fLim 𝑓))
87expr 641 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐾 fLim 𝑓) → 𝑥 ∈ (𝐽 fLim 𝑓)))
98ssrdv 3574 . . 3 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
109ralrimiva 2949 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ 𝐽𝐾) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
11 simpllr 795 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐾 ∈ (TopOn‘𝑋))
12 simplll 794 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ (TopOn‘𝑋))
13 simprl 790 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝐽)
14 toponss 20544 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
1512, 13, 14syl2anc 691 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥𝑋)
16 simprr 792 . . . . . . . . . . . . . 14 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑥)
1715, 16sseldd 3569 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦𝑋)
1817snssd 4281 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → {𝑦} ⊆ 𝑋)
19 snnzg 4251 . . . . . . . . . . . . 13 (𝑦𝑋 → {𝑦} ≠ ∅)
2017, 19syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → {𝑦} ≠ ∅)
21 neifil 21494 . . . . . . . . . . . 12 ((𝐾 ∈ (TopOn‘𝑋) ∧ {𝑦} ⊆ 𝑋 ∧ {𝑦} ≠ ∅) → ((nei‘𝐾)‘{𝑦}) ∈ (Fil‘𝑋))
2211, 18, 20, 21syl3anc 1318 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ((nei‘𝐾)‘{𝑦}) ∈ (Fil‘𝑋))
23 simplr 788 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓))
24 oveq2 6557 . . . . . . . . . . . . 13 (𝑓 = ((nei‘𝐾)‘{𝑦}) → (𝐾 fLim 𝑓) = (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
25 oveq2 6557 . . . . . . . . . . . . 13 (𝑓 = ((nei‘𝐾)‘{𝑦}) → (𝐽 fLim 𝑓) = (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
2624, 25sseq12d 3597 . . . . . . . . . . . 12 (𝑓 = ((nei‘𝐾)‘{𝑦}) → ((𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓) ↔ (𝐾 fLim ((nei‘𝐾)‘{𝑦})) ⊆ (𝐽 fLim ((nei‘𝐾)‘{𝑦}))))
2726rspcv 3278 . . . . . . . . . . 11 (((nei‘𝐾)‘{𝑦}) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓) → (𝐾 fLim ((nei‘𝐾)‘{𝑦})) ⊆ (𝐽 fLim ((nei‘𝐾)‘{𝑦}))))
2822, 23, 27sylc 63 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → (𝐾 fLim ((nei‘𝐾)‘{𝑦})) ⊆ (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
29 neiflim 21588 . . . . . . . . . . 11 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑦 ∈ (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
3011, 17, 29syl2anc 691 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ (𝐾 fLim ((nei‘𝐾)‘{𝑦})))
3128, 30sseldd 3569 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑦 ∈ (𝐽 fLim ((nei‘𝐾)‘{𝑦})))
32 flimneiss 21580 . . . . . . . . 9 (𝑦 ∈ (𝐽 fLim ((nei‘𝐾)‘{𝑦})) → ((nei‘𝐽)‘{𝑦}) ⊆ ((nei‘𝐾)‘{𝑦}))
3331, 32syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → ((nei‘𝐽)‘{𝑦}) ⊆ ((nei‘𝐾)‘{𝑦}))
34 topontop 20541 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
3512, 34syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝐽 ∈ Top)
36 opnneip 20733 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑥𝐽𝑦𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝑦}))
3735, 13, 16, 36syl3anc 1318 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝑦}))
3833, 37sseldd 3569 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ (𝑥𝐽𝑦𝑥)) → 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
3938anassrs 678 . . . . . 6 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) ∧ 𝑦𝑥) → 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
4039ralrimiva 2949 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦}))
41 simpllr 795 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → 𝐾 ∈ (TopOn‘𝑋))
42 topontop 20541 . . . . . 6 (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top)
43 opnnei 20734 . . . . . 6 (𝐾 ∈ Top → (𝑥𝐾 ↔ ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦})))
4441, 42, 433syl 18 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → (𝑥𝐾 ↔ ∀𝑦𝑥 𝑥 ∈ ((nei‘𝐾)‘{𝑦})))
4540, 44mpbird 246 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) ∧ 𝑥𝐽) → 𝑥𝐾)
4645ex 449 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) → (𝑥𝐽𝑥𝐾))
4746ssrdv 3574 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)) → 𝐽𝐾)
4810, 47impbida 873 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (𝐽𝐾 ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝐾 fLim 𝑓) ⊆ (𝐽 fLim 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wss 3540  c0 3874  {csn 4125  cfv 5804  (class class class)co 6549  Topctop 20517  TopOnctopon 20518  neicnei 20711  Filcfil 21459   fLim cflim 21548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-top 20521  df-topon 20523  df-ntr 20634  df-nei 20712  df-fil 21460  df-flim 21553
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator