MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcf Structured version   Unicode version

Theorem flimcf 19577
Description: Fineness is properly characterized by the property that every limit point of a filter in the finer topology is a limit point in the coarser topology. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
flimcf  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( J  C_  K  <->  A. f  e.  ( Fil `  X ) ( K  fLim  f
)  C_  ( J  fLim  f ) ) )
Distinct variable groups:    f, J    f, K    f, X

Proof of Theorem flimcf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 757 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  J  e.  (TopOn `  X )
)
2 simprl 755 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  f  e.  ( Fil `  X
) )
3 simplr 754 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  J  C_  K )
4 flimss1 19568 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  f  e.  ( Fil `  X
)  /\  J  C_  K
)  ->  ( K  fLim  f )  C_  ( J  fLim  f ) )
51, 2, 3, 4syl3anc 1218 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  ( K  fLim  f )  C_  ( J  fLim  f ) )
6 simprr 756 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  x  e.  ( K  fLim  f
) )
75, 6sseldd 3378 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  ( f  e.  ( Fil `  X )  /\  x  e.  ( K  fLim  f )
) )  ->  x  e.  ( J  fLim  f
) )
87expr 615 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  f  e.  ( Fil `  X ) )  -> 
( x  e.  ( K  fLim  f )  ->  x  e.  ( J 
fLim  f ) ) )
98ssrdv 3383 . . 3  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  J  C_  K )  /\  f  e.  ( Fil `  X ) )  -> 
( K  fLim  f
)  C_  ( J  fLim  f ) )
109ralrimiva 2820 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  J  C_  K
)  ->  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )
11 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  K  e.  (TopOn `  X
) )
12 simplll 757 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  J  e.  (TopOn `  X
) )
13 simprl 755 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  e.  J )
14 toponss 18556 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  (TopOn `  X )  /\  x  e.  J )  ->  x  C_  X )
1512, 13, 14syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  C_  X )
16 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  x )
1715, 16sseldd 3378 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  X )
1817snssd 4039 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  { y }  C_  X )
19 snnzg 4013 . . . . . . . . . . . . 13  |-  ( y  e.  X  ->  { y }  =/=  (/) )
2017, 19syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  { y }  =/=  (/) )
21 neifil 19475 . . . . . . . . . . . 12  |-  ( ( K  e.  (TopOn `  X )  /\  {
y }  C_  X  /\  { y }  =/=  (/) )  ->  ( ( nei `  K ) `  { y } )  e.  ( Fil `  X
) )
2211, 18, 20, 21syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
( ( nei `  K
) `  { y } )  e.  ( Fil `  X ) )
23 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  A. f  e.  ( Fil `  X ) ( K  fLim  f )  C_  ( J  fLim  f
) )
24 oveq2 6120 . . . . . . . . . . . . 13  |-  ( f  =  ( ( nei `  K ) `  {
y } )  -> 
( K  fLim  f
)  =  ( K 
fLim  ( ( nei `  K ) `  {
y } ) ) )
25 oveq2 6120 . . . . . . . . . . . . 13  |-  ( f  =  ( ( nei `  K ) `  {
y } )  -> 
( J  fLim  f
)  =  ( J 
fLim  ( ( nei `  K ) `  {
y } ) ) )
2624, 25sseq12d 3406 . . . . . . . . . . . 12  |-  ( f  =  ( ( nei `  K ) `  {
y } )  -> 
( ( K  fLim  f )  C_  ( J  fLim  f )  <->  ( K  fLim  ( ( nei `  K
) `  { y } ) )  C_  ( J  fLim  ( ( nei `  K ) `
 { y } ) ) ) )
2726rspcv 3090 . . . . . . . . . . 11  |-  ( ( ( nei `  K
) `  { y } )  e.  ( Fil `  X )  ->  ( A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f )  ->  ( K  fLim  ( ( nei `  K ) `  {
y } ) ) 
C_  ( J  fLim  ( ( nei `  K
) `  { y } ) ) ) )
2822, 23, 27sylc 60 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
( K  fLim  (
( nei `  K
) `  { y } ) )  C_  ( J  fLim  ( ( nei `  K ) `
 { y } ) ) )
29 neiflim 19569 . . . . . . . . . . 11  |-  ( ( K  e.  (TopOn `  X )  /\  y  e.  X )  ->  y  e.  ( K  fLim  (
( nei `  K
) `  { y } ) ) )
3011, 17, 29syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  ( K 
fLim  ( ( nei `  K ) `  {
y } ) ) )
3128, 30sseldd 3378 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
y  e.  ( J 
fLim  ( ( nei `  K ) `  {
y } ) ) )
32 flimneiss 19561 . . . . . . . . 9  |-  ( y  e.  ( J  fLim  ( ( nei `  K
) `  { y } ) )  -> 
( ( nei `  J
) `  { y } )  C_  (
( nei `  K
) `  { y } ) )
3331, 32syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  -> 
( ( nei `  J
) `  { y } )  C_  (
( nei `  K
) `  { y } ) )
34 topontop 18553 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3512, 34syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  J  e.  Top )
36 opnneip 18745 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  x  e.  J  /\  y  e.  x )  ->  x  e.  ( ( nei `  J ) `
 { y } ) )
3735, 13, 16, 36syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  e.  ( ( nei `  J ) `  { y } ) )
3833, 37sseldd 3378 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  ( x  e.  J  /\  y  e.  x ) )  ->  x  e.  ( ( nei `  K ) `  { y } ) )
3938anassrs 648 . . . . . 6  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  /\  y  e.  x
)  ->  x  e.  ( ( nei `  K
) `  { y } ) )
4039ralrimiva 2820 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  A. y  e.  x  x  e.  ( ( nei `  K
) `  { y } ) )
41 simpllr 758 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  K  e.  (TopOn `  X )
)
42 topontop 18553 . . . . . 6  |-  ( K  e.  (TopOn `  X
)  ->  K  e.  Top )
43 opnnei 18746 . . . . . 6  |-  ( K  e.  Top  ->  (
x  e.  K  <->  A. y  e.  x  x  e.  ( ( nei `  K
) `  { y } ) ) )
4441, 42, 433syl 20 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  (
x  e.  K  <->  A. y  e.  x  x  e.  ( ( nei `  K
) `  { y } ) ) )
4540, 44mpbird 232 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X ) )  /\  A. f  e.  ( Fil `  X ) ( K 
fLim  f )  C_  ( J  fLim  f ) )  /\  x  e.  J )  ->  x  e.  K )
4645ex 434 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )  -> 
( x  e.  J  ->  x  e.  K ) )
4746ssrdv 3383 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  /\  A. f  e.  ( Fil `  X
) ( K  fLim  f )  C_  ( J  fLim  f ) )  ->  J  C_  K )
4810, 47impbida 828 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  X )
)  ->  ( J  C_  K  <->  A. f  e.  ( Fil `  X ) ( K  fLim  f
)  C_  ( J  fLim  f ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620   A.wral 2736    C_ wss 3349   (/)c0 3658   {csn 3898   ` cfv 5439  (class class class)co 6112   Topctop 18520  TopOnctopon 18521   neicnei 18723   Filcfil 19440    fLim cflim 19529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-fbas 17836  df-top 18525  df-topon 18528  df-ntr 18646  df-nei 18724  df-fil 19441  df-flim 19534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator