Mathbox for ML < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem6 Structured version   Visualization version   GIF version

Theorem finxpreclem6 32409
 Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem5.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem6 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
Distinct variable groups:   𝑥,𝑛,𝑁   𝑈,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpreclem6
Dummy variables 𝑚 𝑜 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2676 . . . . 5 (𝑛 = 𝑁 → (𝑛 ∈ ω ↔ 𝑁 ∈ ω))
2 eleq2 2677 . . . . 5 (𝑛 = 𝑁 → (1𝑜𝑛 ↔ 1𝑜𝑁))
31, 2anbi12d 743 . . . 4 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ 1𝑜𝑛) ↔ (𝑁 ∈ ω ∧ 1𝑜𝑁)))
4 anass 679 . . . . . . . . 9 (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑦 ∈ (V × 𝑈)) ↔ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))))
5 nfv 1830 . . . . . . . . . . . . . . 15 𝑥(𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))
6 finxpreclem5.1 . . . . . . . . . . . . . . . . . . . 20 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
7 nfmpt22 6621 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
86, 7nfcxfr 2749 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
9 nfcv 2751 . . . . . . . . . . . . . . . . . . 19 𝑥𝑛, 𝑦
108, 9nfrdg 7397 . . . . . . . . . . . . . . . . . 18 𝑥rec(𝐹, ⟨𝑛, 𝑦⟩)
11 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑥𝑛
1210, 11nffv 6110 . . . . . . . . . . . . . . . . 17 𝑥(rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
1312nfeq2 2766 . . . . . . . . . . . . . . . 16 𝑥∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
1413nfn 1768 . . . . . . . . . . . . . . 15 𝑥 ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)
155, 14nfim 1813 . . . . . . . . . . . . . 14 𝑥((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
16 eleq1 2676 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥 ∈ (V × 𝑈) ↔ 𝑦 ∈ (V × 𝑈)))
1716notbid 307 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (V × 𝑈) ↔ ¬ 𝑦 ∈ (V × 𝑈)))
1817anbi2d 736 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ((1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈)) ↔ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))))
1918anbi2d 736 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) ↔ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))))
20 opeq2 4341 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ⟨𝑛, 𝑥⟩ = ⟨𝑛, 𝑦⟩)
21 rdgeq2 7395 . . . . . . . . . . . . . . . . . . 19 (⟨𝑛, 𝑥⟩ = ⟨𝑛, 𝑦⟩ → rec(𝐹, ⟨𝑛, 𝑥⟩) = rec(𝐹, ⟨𝑛, 𝑦⟩))
2220, 21syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → rec(𝐹, ⟨𝑛, 𝑥⟩) = rec(𝐹, ⟨𝑛, 𝑦⟩))
2322fveq1d 6105 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
2423eqeq2d 2620 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ↔ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
2524notbid 307 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ↔ ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
2619, 25imbi12d 333 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛)) ↔ ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
27 anass 679 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) ↔ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))))
28 vex 3176 . . . . . . . . . . . . . . . . . . . 20 𝑛 ∈ V
29 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = ∅ → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅))
3029eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = ∅ → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥⟩))
31 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = 𝑜 → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜))
3231eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑜 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩))
33 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 = suc 𝑜 → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜))
3433eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = suc 𝑜 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩))
35 opex 4859 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑛, 𝑥⟩ ∈ V
3635rdg0 7404 . . . . . . . . . . . . . . . . . . . . . . . 24 (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥
3736a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘∅) = ⟨𝑛, 𝑥⟩)
38 nnon 6963 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑜 ∈ ω → 𝑜 ∈ On)
39 rdgsuc 7407 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑜 ∈ On → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)))
4038, 39syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑜 ∈ ω → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)))
41 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ → (𝐹‘(rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜)) = (𝐹‘⟨𝑛, 𝑥⟩))
4240, 41sylan9eq 2664 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑜 ∈ ω ∧ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = (𝐹‘⟨𝑛, 𝑥⟩))
436finxpreclem5 32408 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛 ∈ ω ∧ 1𝑜𝑛) → (¬ 𝑥 ∈ (V × 𝑈) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩))
4443imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩)
4542, 44sylan9eq 2664 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑜 ∈ ω ∧ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩) ∧ ((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩)
4645expl 646 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑜 ∈ ω → (((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ ∧ ((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩))
4746expcomd 453 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑜 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑜) = ⟨𝑛, 𝑥⟩ → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘suc 𝑜) = ⟨𝑛, 𝑥⟩)))
4830, 32, 34, 37, 47finds2 6986 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))
49 eleq1 2676 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → (𝑛 ∈ ω ↔ 𝑚 ∈ ω))
50 fveq2 6103 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚))
5150eqeq1d 2612 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑚 → ((rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩ ↔ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))
5251imbi2d 329 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑚 → ((((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩) ↔ (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩)))
5349, 52imbi12d 333 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → ((𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)) ↔ (𝑚 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑚) = ⟨𝑛, 𝑥⟩))))
5448, 53mpbiri 247 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)))
5554equcoms 1934 . . . . . . . . . . . . . . . . . . . 20 (𝑚 = 𝑛 → (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)))
5628, 55vtocle 3255 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ω → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩))
5727, 56syl5bir 232 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ω → ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩))
5857anabsi5 854 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) = ⟨𝑛, 𝑥⟩)
59 vex 3176 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
6028, 59opnzi 4869 . . . . . . . . . . . . . . . . . 18 𝑛, 𝑥⟩ ≠ ∅
6160a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ⟨𝑛, 𝑥⟩ ≠ ∅)
6258, 61eqnetrd 2849 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛) ≠ ∅)
6362necomd 2837 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ∅ ≠ (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛))
6463neneqd 2787 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑥 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑥⟩)‘𝑛))
6515, 26, 64chvar 2250 . . . . . . . . . . . . 13 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))
6665intnand 953 . . . . . . . . . . . 12 ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
6766adantl 481 . . . . . . . . . . 11 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → ¬ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
68 abid 2598 . . . . . . . . . . . . 13 (𝑦 ∈ {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)))
69 opeq1 4340 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑁 → ⟨𝑛, 𝑦⟩ = ⟨𝑁, 𝑦⟩)
70 rdgeq2 7395 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑛, 𝑦⟩ = ⟨𝑁, 𝑦⟩ → rec(𝐹, ⟨𝑛, 𝑦⟩) = rec(𝐹, ⟨𝑁, 𝑦⟩))
7169, 70syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑁 → rec(𝐹, ⟨𝑛, 𝑦⟩) = rec(𝐹, ⟨𝑁, 𝑦⟩))
72 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑁𝑛 = 𝑁)
7371, 72fveq12d 6109 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑁 → (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛) = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))
7473eqeq2d 2620 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑁 → (∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛) ↔ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁)))
751, 74anbi12d 743 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))))
7675abbidv 2728 . . . . . . . . . . . . . . 15 (𝑛 = 𝑁 → {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))})
776dffinxpf 32398 . . . . . . . . . . . . . . 15 (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑦⟩)‘𝑁))}
7876, 77syl6eqr 2662 . . . . . . . . . . . . . 14 (𝑛 = 𝑁 → {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} = (𝑈↑↑𝑁))
7978eleq2d 2673 . . . . . . . . . . . . 13 (𝑛 = 𝑁 → (𝑦 ∈ {𝑦 ∣ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))} ↔ 𝑦 ∈ (𝑈↑↑𝑁)))
8068, 79syl5rbbr 274 . . . . . . . . . . . 12 (𝑛 = 𝑁 → (𝑦 ∈ (𝑈↑↑𝑁) ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
8180adantr 480 . . . . . . . . . . 11 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → (𝑦 ∈ (𝑈↑↑𝑁) ↔ (𝑛 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑛, 𝑦⟩)‘𝑛))))
8267, 81mtbird 314 . . . . . . . . . 10 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈)))) → ¬ 𝑦 ∈ (𝑈↑↑𝑁))
8382ex 449 . . . . . . . . 9 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ (1𝑜𝑛 ∧ ¬ 𝑦 ∈ (V × 𝑈))) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
844, 83syl5bi 231 . . . . . . . 8 (𝑛 = 𝑁 → (((𝑛 ∈ ω ∧ 1𝑜𝑛) ∧ ¬ 𝑦 ∈ (V × 𝑈)) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
8584expdimp 452 . . . . . . 7 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1𝑜𝑛)) → (¬ 𝑦 ∈ (V × 𝑈) → ¬ 𝑦 ∈ (𝑈↑↑𝑁)))
8685con4d 113 . . . . . 6 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1𝑜𝑛)) → (𝑦 ∈ (𝑈↑↑𝑁) → 𝑦 ∈ (V × 𝑈)))
8786ssrdv 3574 . . . . 5 ((𝑛 = 𝑁 ∧ (𝑛 ∈ ω ∧ 1𝑜𝑛)) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
8887ex 449 . . . 4 (𝑛 = 𝑁 → ((𝑛 ∈ ω ∧ 1𝑜𝑛) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
893, 88sylbird 249 . . 3 (𝑛 = 𝑁 → ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
9089vtocleg 3252 . 2 (𝑁 ∈ ω → ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈)))
9190anabsi5 854 1 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑𝑁) ⊆ (V × 𝑈))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596   ≠ wne 2780  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  ifcif 4036  ⟨cop 4131  ∪ cuni 4372   × cxp 5036  Oncon0 5640  suc csuc 5642  ‘cfv 5804   ↦ cmpt2 6551  ωcom 6957  1st c1st 7057  reccrdg 7392  1𝑜c1o 7440  ↑↑cfinxp 32396 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-finxp 32397 This theorem is referenced by:  finxpsuclem  32410
 Copyright terms: Public domain W3C validator