Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpsuclem Structured version   Visualization version   GIF version

Theorem finxpsuclem 32410
Description: Lemma for finxpsuc 32411. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpsuclem.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpsuclem ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpsuclem
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 6978 . . . . . . . . . 10 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
21adantr 480 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → suc 𝑁 ∈ ω)
3 1on 7454 . . . . . . . . . . . . 13 1𝑜 ∈ On
43onordi 5749 . . . . . . . . . . . 12 Ord 1𝑜
5 nnord 6965 . . . . . . . . . . . 12 (𝑁 ∈ ω → Ord 𝑁)
6 ordsseleq 5669 . . . . . . . . . . . 12 ((Ord 1𝑜 ∧ Ord 𝑁) → (1𝑜𝑁 ↔ (1𝑜𝑁 ∨ 1𝑜 = 𝑁)))
74, 5, 6sylancr 694 . . . . . . . . . . 11 (𝑁 ∈ ω → (1𝑜𝑁 ↔ (1𝑜𝑁 ∨ 1𝑜 = 𝑁)))
87biimpa 500 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (1𝑜𝑁 ∨ 1𝑜 = 𝑁))
9 elelsuc 5714 . . . . . . . . . . . . 13 (1𝑜𝑁 → 1𝑜 ∈ suc 𝑁)
109a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ω → (1𝑜𝑁 → 1𝑜 ∈ suc 𝑁))
11 sucidg 5720 . . . . . . . . . . . . 13 (𝑁 ∈ ω → 𝑁 ∈ suc 𝑁)
12 eleq1 2676 . . . . . . . . . . . . 13 (1𝑜 = 𝑁 → (1𝑜 ∈ suc 𝑁𝑁 ∈ suc 𝑁))
1311, 12syl5ibrcom 236 . . . . . . . . . . . 12 (𝑁 ∈ ω → (1𝑜 = 𝑁 → 1𝑜 ∈ suc 𝑁))
1410, 13jaod 394 . . . . . . . . . . 11 (𝑁 ∈ ω → ((1𝑜𝑁 ∨ 1𝑜 = 𝑁) → 1𝑜 ∈ suc 𝑁))
1514adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → ((1𝑜𝑁 ∨ 1𝑜 = 𝑁) → 1𝑜 ∈ suc 𝑁))
168, 15mpd 15 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → 1𝑜 ∈ suc 𝑁)
17 finxpsuclem.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
1817finxpreclem6 32409 . . . . . . . . 9 ((suc 𝑁 ∈ ω ∧ 1𝑜 ∈ suc 𝑁) → (𝑈↑↑suc 𝑁) ⊆ (V × 𝑈))
192, 16, 18syl2anc 691 . . . . . . . 8 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑suc 𝑁) ⊆ (V × 𝑈))
2019sselda 3568 . . . . . . 7 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → 𝑦 ∈ (V × 𝑈))
211ad2antrr 758 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → suc 𝑁 ∈ ω)
22 df-2o 7448 . . . . . . . . . . . . . . 15 2𝑜 = suc 1𝑜
23 ordsucsssuc 6915 . . . . . . . . . . . . . . . . 17 ((Ord 1𝑜 ∧ Ord 𝑁) → (1𝑜𝑁 ↔ suc 1𝑜 ⊆ suc 𝑁))
244, 5, 23sylancr 694 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ω → (1𝑜𝑁 ↔ suc 1𝑜 ⊆ suc 𝑁))
2524biimpa 500 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → suc 1𝑜 ⊆ suc 𝑁)
2622, 25syl5eqss 3612 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → 2𝑜 ⊆ suc 𝑁)
2726adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 2𝑜 ⊆ suc 𝑁)
28 simpr 476 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 𝑦 ∈ (V × 𝑈))
2917finxpreclem4 32407 . . . . . . . . . . . . 13 (((suc 𝑁 ∈ ω ∧ 2𝑜 ⊆ suc 𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁))
3021, 27, 28, 29syl21anc 1317 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁))
31 ordunisuc 6924 . . . . . . . . . . . . . . . 16 (Ord 𝑁 suc 𝑁 = 𝑁)
325, 31syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → suc 𝑁 = 𝑁)
33 opeq1 4340 . . . . . . . . . . . . . . . 16 ( suc 𝑁 = 𝑁 → ⟨ suc 𝑁, (1st𝑦)⟩ = ⟨𝑁, (1st𝑦)⟩)
34 rdgeq2 7395 . . . . . . . . . . . . . . . 16 (⟨ suc 𝑁, (1st𝑦)⟩ = ⟨𝑁, (1st𝑦)⟩ → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3533, 34syl 17 . . . . . . . . . . . . . . 15 ( suc 𝑁 = 𝑁 → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3632, 35syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3736, 32fveq12d 6109 . . . . . . . . . . . . 13 (𝑁 ∈ ω → (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
3837ad2antrr 758 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
3930, 38eqtrd 2644 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
4039eqeq2d 2620 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
411biantrurd 528 . . . . . . . . . . . 12 (𝑁 ∈ ω → (∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) ↔ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁))))
4217dffinxpf 32398 . . . . . . . . . . . . 13 (𝑈↑↑suc 𝑁) = {𝑦 ∣ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁))}
4342abeq2i 2722 . . . . . . . . . . . 12 (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
4441, 43syl6rbbr 278 . . . . . . . . . . 11 (𝑁 ∈ ω → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
4544ad2antrr 758 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
46 fvex 6113 . . . . . . . . . . . . 13 (1st𝑦) ∈ V
47 opeq2 4341 . . . . . . . . . . . . . . . . 17 (𝑧 = (1st𝑦) → ⟨𝑁, 𝑧⟩ = ⟨𝑁, (1st𝑦)⟩)
48 rdgeq2 7395 . . . . . . . . . . . . . . . . 17 (⟨𝑁, 𝑧⟩ = ⟨𝑁, (1st𝑦)⟩ → rec(𝐹, ⟨𝑁, 𝑧⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
4947, 48syl 17 . . . . . . . . . . . . . . . 16 (𝑧 = (1st𝑦) → rec(𝐹, ⟨𝑁, 𝑧⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
5049fveq1d 6105 . . . . . . . . . . . . . . 15 (𝑧 = (1st𝑦) → (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
5150eqeq2d 2620 . . . . . . . . . . . . . 14 (𝑧 = (1st𝑦) → (∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5251anbi2d 736 . . . . . . . . . . . . 13 (𝑧 = (1st𝑦) → ((𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))))
5317dffinxpf 32398 . . . . . . . . . . . . 13 (𝑈↑↑𝑁) = {𝑧 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁))}
5446, 52, 53elab2 3323 . . . . . . . . . . . 12 ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5554baib 942 . . . . . . . . . . 11 (𝑁 ∈ ω → ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5655ad2antrr 758 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5740, 45, 563bitr4d 299 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ (1st𝑦) ∈ (𝑈↑↑𝑁)))
5857biimpd 218 . . . . . . . 8 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
5958impancom 455 . . . . . . 7 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → (𝑦 ∈ (V × 𝑈) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
6020, 59mpd 15 . . . . . 6 (((𝑁 ∈ ω ∧ 1𝑜𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → (1st𝑦) ∈ (𝑈↑↑𝑁))
6160ex 449 . . . . 5 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
6220ex 449 . . . . 5 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → 𝑦 ∈ (V × 𝑈)))
6361, 62jcad 554 . . . 4 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈))))
6457exbiri 650 . . . . . 6 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (V × 𝑈) → ((1st𝑦) ∈ (𝑈↑↑𝑁) → 𝑦 ∈ (𝑈↑↑suc 𝑁))))
6564impd 446 . . . . 5 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → ((𝑦 ∈ (V × 𝑈) ∧ (1st𝑦) ∈ (𝑈↑↑𝑁)) → 𝑦 ∈ (𝑈↑↑suc 𝑁)))
6665ancomsd 469 . . . 4 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 𝑦 ∈ (𝑈↑↑suc 𝑁)))
6763, 66impbid 201 . . 3 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈))))
68 elxp8 32395 . . 3 (𝑦 ∈ ((𝑈↑↑𝑁) × 𝑈) ↔ ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈)))
6967, 68syl6bbr 277 . 2 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ 𝑦 ∈ ((𝑈↑↑𝑁) × 𝑈)))
7069eqrdv 2608 1 ((𝑁 ∈ ω ∧ 1𝑜𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  wss 3540  c0 3874  ifcif 4036  cop 4131   cuni 4372   × cxp 5036  Ord word 5639  suc csuc 5642  cfv 5804  cmpt2 6551  ωcom 6957  1st c1st 7057  reccrdg 7392  1𝑜c1o 7440  2𝑜c2o 7441  ↑↑cfinxp 32396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-finxp 32397
This theorem is referenced by:  finxpsuc  32411
  Copyright terms: Public domain W3C validator