MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqgabl Structured version   Visualization version   GIF version

Theorem eqgabl 18063
Description: Value of the subgroup coset equivalence relation on an abelian group. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
eqgabl.x 𝑋 = (Base‘𝐺)
eqgabl.n = (-g𝐺)
eqgabl.r = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
eqgabl ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))

Proof of Theorem eqgabl
StepHypRef Expression
1 eqgabl.x . . 3 𝑋 = (Base‘𝐺)
2 eqid 2610 . . 3 (invg𝐺) = (invg𝐺)
3 eqid 2610 . . 3 (+g𝐺) = (+g𝐺)
4 eqgabl.r . . 3 = (𝐺 ~QG 𝑆)
51, 2, 3, 4eqgval 17466 . 2 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆)))
6 simpll 786 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Abel)
7 ablgrp 18021 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
87ad2antrr 758 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Grp)
9 simprl 790 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
101, 2grpinvcl 17290 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
118, 9, 10syl2anc 691 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
12 simprr 792 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
131, 3ablcom 18033 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((invg𝐺)‘𝐴) ∈ 𝑋𝐵𝑋) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
146, 11, 12, 13syl3anc 1318 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
15 eqgabl.n . . . . . . . 8 = (-g𝐺)
161, 3, 2, 15grpsubval 17288 . . . . . . 7 ((𝐵𝑋𝐴𝑋) → (𝐵 𝐴) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
1712, 9, 16syl2anc 691 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (𝐵 𝐴) = (𝐵(+g𝐺)((invg𝐺)‘𝐴)))
1814, 17eqtr4d 2647 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → (((invg𝐺)‘𝐴)(+g𝐺)𝐵) = (𝐵 𝐴))
1918eleq1d 2672 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆𝑋) ∧ (𝐴𝑋𝐵𝑋)) → ((((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆 ↔ (𝐵 𝐴) ∈ 𝑆))
2019pm5.32da 671 . . 3 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (((𝐴𝑋𝐵𝑋) ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐵 𝐴) ∈ 𝑆)))
21 df-3an 1033 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆))
22 df-3an 1033 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐵 𝐴) ∈ 𝑆))
2320, 21, 223bitr4g 302 . 2 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → ((𝐴𝑋𝐵𝑋 ∧ (((invg𝐺)‘𝐴)(+g𝐺)𝐵) ∈ 𝑆) ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
245, 23bitrd 267 1 ((𝐺 ∈ Abel ∧ 𝑆𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐵 𝐴) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245  invgcminusg 17246  -gcsg 17247   ~QG cqg 17413  Abelcabl 18017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-eqg 17416  df-cmn 18018  df-abl 18019
This theorem is referenced by:  2idlcpbl  19055  zndvds  19717  tgptsmscls  21763
  Copyright terms: Public domain W3C validator