Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  invghm Structured version   Visualization version   GIF version

Theorem invghm 18062
 Description: The inversion map is a group automorphism if and only if the group is abelian. (In general it is only a group homomorphism into the opposite group, but in an abelian group the opposite group coincides with the group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
invghm.b 𝐵 = (Base‘𝐺)
invghm.m 𝐼 = (invg𝐺)
Assertion
Ref Expression
invghm (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))

Proof of Theorem invghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invghm.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2610 . . 3 (+g𝐺) = (+g𝐺)
3 ablgrp 18021 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
4 invghm.m . . . . 5 𝐼 = (invg𝐺)
51, 4grpinvf 17289 . . . 4 (𝐺 ∈ Grp → 𝐼:𝐵𝐵)
63, 5syl 17 . . 3 (𝐺 ∈ Abel → 𝐼:𝐵𝐵)
71, 2, 4ablinvadd 18038 . . . 4 ((𝐺 ∈ Abel ∧ 𝑥𝐵𝑦𝐵) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
873expb 1258 . . 3 ((𝐺 ∈ Abel ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝑥(+g𝐺)𝑦)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
91, 1, 2, 2, 3, 3, 6, 8isghmd 17492 . 2 (𝐺 ∈ Abel → 𝐼 ∈ (𝐺 GrpHom 𝐺))
10 ghmgrp1 17485 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Grp)
1110adantr 480 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐺 ∈ Grp)
12 simprr 792 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
13 simprl 790 . . . . . . . 8 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
141, 2, 4grpinvadd 17316 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝐼‘(𝑦(+g𝐺)𝑥)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
1511, 12, 13, 14syl3anc 1318 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝑦(+g𝐺)𝑥)) = ((𝐼𝑥)(+g𝐺)(𝐼𝑦)))
1615fveq2d 6107 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))))
17 simpl 472 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → 𝐼 ∈ (𝐺 GrpHom 𝐺))
181, 4grpinvcl 17290 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝐼𝑥) ∈ 𝐵)
1911, 13, 18syl2anc 691 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼𝑥) ∈ 𝐵)
201, 4grpinvcl 17290 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝐼𝑦) ∈ 𝐵)
2111, 12, 20syl2anc 691 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼𝑦) ∈ 𝐵)
221, 2, 2ghmlin 17488 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝐼𝑥) ∈ 𝐵 ∧ (𝐼𝑦) ∈ 𝐵) → (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))) = ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))))
2317, 19, 21, 22syl3anc 1318 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘((𝐼𝑥)(+g𝐺)(𝐼𝑦))) = ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))))
241, 4grpinvinv 17305 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝐼‘(𝐼𝑥)) = 𝑥)
2511, 13, 24syl2anc 691 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼𝑥)) = 𝑥)
261, 4grpinvinv 17305 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝐼‘(𝐼𝑦)) = 𝑦)
2711, 12, 26syl2anc 691 . . . . . . 7 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼𝑦)) = 𝑦)
2825, 27oveq12d 6567 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐼‘(𝐼𝑥))(+g𝐺)(𝐼‘(𝐼𝑦))) = (𝑥(+g𝐺)𝑦))
2916, 23, 283eqtrd 2648 . . . . 5 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑥(+g𝐺)𝑦))
301, 2grpcl 17253 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → (𝑦(+g𝐺)𝑥) ∈ 𝐵)
3111, 12, 13, 30syl3anc 1318 . . . . . 6 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦(+g𝐺)𝑥) ∈ 𝐵)
321, 4grpinvinv 17305 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑦(+g𝐺)𝑥) ∈ 𝐵) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑦(+g𝐺)𝑥))
3311, 31, 32syl2anc 691 . . . . 5 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝐼‘(𝐼‘(𝑦(+g𝐺)𝑥))) = (𝑦(+g𝐺)𝑥))
3429, 33eqtr3d 2646 . . . 4 ((𝐼 ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
3534ralrimivva 2954 . . 3 (𝐼 ∈ (𝐺 GrpHom 𝐺) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
361, 2isabl2 18024 . . 3 (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
3710, 35, 36sylanbrc 695 . 2 (𝐼 ∈ (𝐺 GrpHom 𝐺) → 𝐺 ∈ Abel)
389, 37impbii 198 1 (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245  invgcminusg 17246   GrpHom cghm 17480  Abelcabl 18017 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-ghm 17481  df-cmn 18018  df-abl 18019 This theorem is referenced by:  gsuminv  18169  invlmhm  18863  tsmsinv  21761
 Copyright terms: Public domain W3C validator