Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elicoelioo Structured version   Visualization version   GIF version

Theorem elicoelioo 28930
Description: Relate elementhood to a closed-below, open-above interval with elementhood to the same open interval or to its lower bound. (Contributed by Thierry Arnoux, 6-Jul-2017.)
Assertion
Ref Expression
elicoelioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))

Proof of Theorem elicoelioo
StepHypRef Expression
1 simpl1 1057 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴 ∈ ℝ*)
2 simpl2 1058 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐵 ∈ ℝ*)
3 simprl 790 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ (𝐴[,)𝐵))
4 elico1 12089 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
54biimpa 500 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
65simp1d 1066 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
71, 2, 3, 6syl21anc 1317 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ ℝ*)
85simp2d 1067 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
91, 2, 3, 8syl21anc 1317 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴𝐶)
101, 2jca 553 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
11 simprr 792 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → ¬ 𝐶 ∈ (𝐴(,)𝐵))
125simp3d 1068 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵)
1310, 3, 12syl2anc 691 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 < 𝐵)
14 elioo1 12086 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
1514notbid 307 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐶 ∈ (𝐴(,)𝐵) ↔ ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵)))
1615biimpa 500 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → ¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵))
17 3anan32 1043 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
1817notbii 309 . . . . . . . . . . 11 (¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
19 imnan 437 . . . . . . . . . . 11 (((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶) ↔ ¬ ((𝐶 ∈ ℝ*𝐶 < 𝐵) ∧ 𝐴 < 𝐶))
2018, 19bitr4i 266 . . . . . . . . . 10 (¬ (𝐶 ∈ ℝ*𝐴 < 𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶))
2116, 20sylib 207 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → ((𝐶 ∈ ℝ*𝐶 < 𝐵) → ¬ 𝐴 < 𝐶))
2221imp 444 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) ∧ (𝐶 ∈ ℝ*𝐶 < 𝐵)) → ¬ 𝐴 < 𝐶)
2310, 11, 7, 13, 22syl22anc 1319 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → ¬ 𝐴 < 𝐶)
24 xeqlelt 28928 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 = 𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴 < 𝐶)))
2524biimpar 501 . . . . . . 7 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶 ∧ ¬ 𝐴 < 𝐶)) → 𝐴 = 𝐶)
261, 7, 9, 23, 25syl22anc 1319 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵))) → 𝐴 = 𝐶)
2726ex 449 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐴 = 𝐶))
28 eqcom 2617 . . . . 5 (𝐴 = 𝐶𝐶 = 𝐴)
2927, 28syl6ib 240 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 = 𝐴))
30 pm5.6 949 . . . 4 (((𝐶 ∈ (𝐴[,)𝐵) ∧ ¬ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 = 𝐴) ↔ (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴)))
3129, 30sylib 207 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴)))
32 orcom 401 . . 3 ((𝐶 ∈ (𝐴(,)𝐵) ∨ 𝐶 = 𝐴) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵)))
3331, 32syl6ib 240 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) → (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))
34 simpr 476 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 = 𝐴)
35 simpl1 1057 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴 ∈ ℝ*)
3634, 35eqeltrd 2688 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ ℝ*)
37 xrleid 11859 . . . . . . 7 (𝐴 ∈ ℝ*𝐴𝐴)
3835, 37syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴𝐴)
3938, 34breqtrrd 4611 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴𝐶)
40 simpl3 1059 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐴 < 𝐵)
4134, 40eqbrtrd 4605 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 < 𝐵)
42 simpl2 1058 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐵 ∈ ℝ*)
4335, 42, 4syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
4436, 39, 41, 43mpbir3and 1238 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 = 𝐴) → 𝐶 ∈ (𝐴[,)𝐵))
45 ioossico 12133 . . . . 5 (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵)
46 simpr 476 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴(,)𝐵))
4745, 46sseldi 3566 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ 𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵))
4844, 47jaodan 822 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))) → 𝐶 ∈ (𝐴[,)𝐵))
4948ex 449 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵)))
5033, 49impbid 201 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 = 𝐴𝐶 ∈ (𝐴(,)𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977   class class class wbr 4583  (class class class)co 6549  *cxr 9952   < clt 9953  cle 9954  (,)cioo 12046  [,)cico 12048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioo 12050  df-ico 12052
This theorem is referenced by:  xrge0mulc1cn  29315
  Copyright terms: Public domain W3C validator