Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioossico | Structured version Visualization version GIF version |
Description: An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017.) |
Ref | Expression |
---|---|
ioossico | ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ioo 12050 | . 2 ⊢ (,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 < 𝑥 ∧ 𝑥 < 𝑏)}) | |
2 | df-ico 12052 | . 2 ⊢ [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑥 ∈ ℝ* ∣ (𝑎 ≤ 𝑥 ∧ 𝑥 < 𝑏)}) | |
3 | xrltle 11858 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 < 𝑤 → 𝐴 ≤ 𝑤)) | |
4 | idd 24 | . 2 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝑤 < 𝐵 → 𝑤 < 𝐵)) | |
5 | 1, 2, 3, 4 | ixxssixx 12060 | 1 ⊢ (𝐴(,)𝐵) ⊆ (𝐴[,)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∈ wcel 1977 ⊆ wss 3540 class class class wbr 4583 (class class class)co 6549 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 (,)cioo 12046 [,)cico 12048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-pre-lttri 9889 ax-pre-lttrn 9890 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-ioo 12050 df-ico 12052 |
This theorem is referenced by: elicoelioo 28930 esumdivc 29472 omssubadd 29689 icomnfinre 38626 limcresioolb 38710 icocncflimc 38775 fourierdlem41 39041 fourierdlem46 39045 fouriersw 39124 ovolval5lem3 39544 ioosshoi 39560 vonioolem2 39572 amgmwlem 42357 |
Copyright terms: Public domain | W3C validator |