Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccelico Structured version   Visualization version   GIF version

Theorem eliccelico 28929
 Description: Relate elementhood to a closed interval with elementhood to the same closed-below, open-above interval or to its upper bound. (Contributed by Thierry Arnoux, 3-Jul-2017.)
Assertion
Ref Expression
eliccelico ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))

Proof of Theorem eliccelico
StepHypRef Expression
1 simpl1 1057 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐴 ∈ ℝ*)
2 simpl2 1058 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐵 ∈ ℝ*)
3 simprl 790 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 ∈ (𝐴[,]𝐵))
4 elicc1 12090 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
54biimpa 500 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵))
65simp1d 1066 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ*)
71, 2, 3, 6syl21anc 1317 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 ∈ ℝ*)
85simp3d 1068 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
91, 2, 3, 8syl21anc 1317 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶𝐵)
101, 2jca 553 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
11 simprr 792 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → ¬ 𝐶 ∈ (𝐴[,)𝐵))
125simp2d 1067 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
1310, 3, 12syl2anc 691 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐴𝐶)
14 elico1 12089 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,)𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
1514notbid 307 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 𝐶 ∈ (𝐴[,)𝐵) ↔ ¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵)))
1615biimpa 500 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → ¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵))
17 df-3an 1033 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
1817notbii 309 . . . . . . . . 9 (¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
19 imnan 437 . . . . . . . . 9 (((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵) ↔ ¬ ((𝐶 ∈ ℝ*𝐴𝐶) ∧ 𝐶 < 𝐵))
2018, 19bitr4i 266 . . . . . . . 8 (¬ (𝐶 ∈ ℝ*𝐴𝐶𝐶 < 𝐵) ↔ ((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵))
2116, 20sylib 207 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → ((𝐶 ∈ ℝ*𝐴𝐶) → ¬ 𝐶 < 𝐵))
2221imp 444 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) ∧ (𝐶 ∈ ℝ*𝐴𝐶)) → ¬ 𝐶 < 𝐵)
2310, 11, 7, 13, 22syl22anc 1319 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → ¬ 𝐶 < 𝐵)
24 xeqlelt 28928 . . . . . 6 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 = 𝐵 ↔ (𝐶𝐵 ∧ ¬ 𝐶 < 𝐵)))
2524biimpar 501 . . . . 5 (((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶𝐵 ∧ ¬ 𝐶 < 𝐵)) → 𝐶 = 𝐵)
267, 2, 9, 23, 25syl22anc 1319 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵))) → 𝐶 = 𝐵)
2726ex 449 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 = 𝐵))
28 pm5.6 949 . . 3 (((𝐶 ∈ (𝐴[,]𝐵) ∧ ¬ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 = 𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
2927, 28sylib 207 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) → (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
30 icossicc 12131 . . . . 5 (𝐴[,)𝐵) ⊆ (𝐴[,]𝐵)
31 simpr 476 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ (𝐴[,)𝐵))
3230, 31sseldi 3566 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
33 simpr 476 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 = 𝐵)
34 simpl2 1058 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵 ∈ ℝ*)
3533, 34eqeltrd 2688 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ ℝ*)
36 simpl3 1059 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴𝐵)
3736, 33breqtrrd 4611 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴𝐶)
38 xrleid 11859 . . . . . . 7 (𝐵 ∈ ℝ*𝐵𝐵)
3934, 38syl 17 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐵𝐵)
4033, 39eqbrtrd 4605 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶𝐵)
41 simpl1 1057 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐴 ∈ ℝ*)
4241, 34, 4syl2anc 691 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ*𝐴𝐶𝐶𝐵)))
4335, 37, 40, 42mpbir3and 1238 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵))
4432, 43jaodan 822 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)) → 𝐶 ∈ (𝐴[,]𝐵))
4544ex 449 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵) → 𝐶 ∈ (𝐴[,]𝐵)))
4629, 45impbid 201 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ (𝐴[,)𝐵) ∨ 𝐶 = 𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   class class class wbr 4583  (class class class)co 6549  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  [,)cico 12048  [,]cicc 12049 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ico 12052  df-icc 12053 This theorem is referenced by:  xrge0adddir  29023  esumcvg  29475
 Copyright terms: Public domain W3C validator