Mathbox for David A. Wheeler < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpfrac1 Structured version   Visualization version   GIF version

Theorem dpfrac1 42312
 Description: Prove a simple equivalence involving the decimal point. See df-dp 42308 and dpcl 42311. (Contributed by David A. Wheeler, 15-May-2015.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
dpfrac1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = (𝐴𝐵 / 10))

Proof of Theorem dpfrac1
StepHypRef Expression
1 df-dp2 42306 . 2 𝐴𝐵 = (𝐴 + (𝐵 / 10))
2 dpval 42310 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = 𝐴𝐵)
3 nn0cn 11179 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
4 recn 9905 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
5 dfdec10 11373 . . . . 5 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
65oveq1i 6559 . . . 4 (𝐴𝐵 / 10) = (((10 · 𝐴) + 𝐵) / 10)
7 10re 11393 . . . . . . . . 9 10 ∈ ℝ
87recni 9931 . . . . . . . 8 10 ∈ ℂ
98a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → 10 ∈ ℂ)
10 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
119, 10mulcld 9939 . . . . . 6 (𝐴 ∈ ℂ → (10 · 𝐴) ∈ ℂ)
12 10pos 11391 . . . . . . . . 9 0 < 10
137, 12gt0ne0ii 10443 . . . . . . . 8 10 ≠ 0
148, 13pm3.2i 470 . . . . . . 7 (10 ∈ ℂ ∧ 10 ≠ 0)
15 divdir 10589 . . . . . . 7 (((10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (10 ∈ ℂ ∧ 10 ≠ 0)) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
1614, 15mp3an3 1405 . . . . . 6 (((10 · 𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
1711, 16sylan 487 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (((10 · 𝐴) / 10) + (𝐵 / 10)))
18 divcan3 10590 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 10 ∈ ℂ ∧ 10 ≠ 0) → ((10 · 𝐴) / 10) = 𝐴)
198, 13, 18mp3an23 1408 . . . . . . 7 (𝐴 ∈ ℂ → ((10 · 𝐴) / 10) = 𝐴)
2019oveq1d 6564 . . . . . 6 (𝐴 ∈ ℂ → (((10 · 𝐴) / 10) + (𝐵 / 10)) = (𝐴 + (𝐵 / 10)))
2120adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) / 10) + (𝐵 / 10)) = (𝐴 + (𝐵 / 10)))
2217, 21eqtrd 2644 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((10 · 𝐴) + 𝐵) / 10) = (𝐴 + (𝐵 / 10)))
236, 22syl5eq 2656 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵 / 10) = (𝐴 + (𝐵 / 10)))
243, 4, 23syl2an 493 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴𝐵 / 10) = (𝐴 + (𝐵 / 10)))
251, 2, 243eqtr4a 2670 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℝ) → (𝐴.𝐵) = (𝐴𝐵 / 10))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   / cdiv 10563  ℕ0cn0 11169  ;cdc 11369  _cdp2 42304  .cdp 42305 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-dec 11370  df-dp2 42306  df-dp 42308 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator