Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cplgr3v Structured version   Visualization version   GIF version

Theorem cplgr3v 40657
 Description: A pseudograph with three (different) vertices is complete iff there is an edge between each of these three vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 5-Nov-2020.)
Hypotheses
Ref Expression
cplgr3v.e 𝐸 = (Edg‘𝐺)
cplgr3v.t (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
cplgr3v (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))

Proof of Theorem cplgr3v
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cplgr3v.t . . . . 5 (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶}
21eqcomi 2619 . . . 4 {𝐴, 𝐵, 𝐶} = (Vtx‘𝐺)
32iscplgrnb 40638 . . 3 (𝐺 ∈ UPGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
433ad2ant2 1076 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
5 sneq 4135 . . . . . 6 (𝑣 = 𝐴 → {𝑣} = {𝐴})
65difeq2d 3690 . . . . 5 (𝑣 = 𝐴 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐴}))
7 tprot 4228 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
87difeq1i 3686 . . . . . . 7 ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = ({𝐵, 𝐶, 𝐴} ∖ {𝐴})
9 necom 2835 . . . . . . . . 9 (𝐴𝐵𝐵𝐴)
10 necom 2835 . . . . . . . . 9 (𝐴𝐶𝐶𝐴)
11 diftpsn3 4273 . . . . . . . . 9 ((𝐵𝐴𝐶𝐴) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
129, 10, 11syl2anb 495 . . . . . . . 8 ((𝐴𝐵𝐴𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
13123adant3 1074 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
148, 13syl5eq 2656 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = {𝐵, 𝐶})
15143ad2ant3 1077 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = {𝐵, 𝐶})
166, 15sylan9eqr 2666 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐵, 𝐶})
17 oveq2 6557 . . . . . 6 (𝑣 = 𝐴 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐴))
1817eleq2d 2673 . . . . 5 (𝑣 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
1918adantl 481 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
2016, 19raleqbidv 3129 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
21 sneq 4135 . . . . . 6 (𝑣 = 𝐵 → {𝑣} = {𝐵})
2221difeq2d 3690 . . . . 5 (𝑣 = 𝐵 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐵}))
23 tprot 4228 . . . . . . . . 9 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
2423eqcomi 2619 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵}
2524difeq1i 3686 . . . . . . 7 ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = ({𝐶, 𝐴, 𝐵} ∖ {𝐵})
26 necom 2835 . . . . . . . . . . . 12 (𝐵𝐶𝐶𝐵)
2726biimpi 205 . . . . . . . . . . 11 (𝐵𝐶𝐶𝐵)
2827anim2i 591 . . . . . . . . . 10 ((𝐴𝐵𝐵𝐶) → (𝐴𝐵𝐶𝐵))
2928ancomd 466 . . . . . . . . 9 ((𝐴𝐵𝐵𝐶) → (𝐶𝐵𝐴𝐵))
30 diftpsn3 4273 . . . . . . . . 9 ((𝐶𝐵𝐴𝐵) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
3129, 30syl 17 . . . . . . . 8 ((𝐴𝐵𝐵𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
32313adant2 1073 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
3325, 32syl5eq 2656 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = {𝐶, 𝐴})
34333ad2ant3 1077 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = {𝐶, 𝐴})
3522, 34sylan9eqr 2666 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐶, 𝐴})
36 oveq2 6557 . . . . . 6 (𝑣 = 𝐵 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐵))
3736eleq2d 2673 . . . . 5 (𝑣 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
3837adantl 481 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
3935, 38raleqbidv 3129 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
40 sneq 4135 . . . . . 6 (𝑣 = 𝐶 → {𝑣} = {𝐶})
4140difeq2d 3690 . . . . 5 (𝑣 = 𝐶 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}))
42 diftpsn3 4273 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
43423adant1 1072 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
44433ad2ant3 1077 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
4541, 44sylan9eqr 2666 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐴, 𝐵})
46 oveq2 6557 . . . . . 6 (𝑣 = 𝐶 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐶))
4746eleq2d 2673 . . . . 5 (𝑣 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
4847adantl 481 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
4945, 48raleqbidv 3129 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
50 simp1 1054 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐴𝑋)
51503ad2ant1 1075 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐴𝑋)
52 simp2 1055 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐵𝑌)
53523ad2ant1 1075 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐵𝑌)
54 simp3 1056 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶𝑍)
55543ad2ant1 1075 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐶𝑍)
5620, 39, 49, 51, 53, 55raltpd 4258 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶))))
57 eleq1 2676 . . . . . . 7 (𝑛 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
58 eleq1 2676 . . . . . . 7 (𝑛 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
5957, 58ralprg 4181 . . . . . 6 ((𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
60593adant1 1072 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
61 eleq1 2676 . . . . . . . 8 (𝑛 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐵)))
62 eleq1 2676 . . . . . . . 8 (𝑛 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)))
6361, 62ralprg 4181 . . . . . . 7 ((𝐶𝑍𝐴𝑋) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
6463ancoms 468 . . . . . 6 ((𝐴𝑋𝐶𝑍) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
65643adant2 1073 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
66 eleq1 2676 . . . . . . 7 (𝑛 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)))
67 eleq1 2676 . . . . . . 7 (𝑛 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
6866, 67ralprg 4181 . . . . . 6 ((𝐴𝑋𝐵𝑌) → (∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
69683adant3 1074 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
7060, 65, 693anbi123d 1391 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
71703ad2ant1 1075 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
72 3an6 1401 . . . 4 (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
7372a1i 11 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
74 nbgrsym 40591 . . . . . . 7 (𝐺 ∈ UPGraph → (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)))
75 nbgrsym 40591 . . . . . . 7 (𝐺 ∈ UPGraph → (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
76 nbgrsym 40591 . . . . . . 7 (𝐺 ∈ UPGraph → (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
7774, 75, 763anbi123d 1391 . . . . . 6 (𝐺 ∈ UPGraph → ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
78773ad2ant2 1076 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
7978anbi1d 737 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
80 3anrot 1036 . . . . . . . 8 ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
8180bicomi 213 . . . . . . 7 ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8281anbi1i 727 . . . . . 6 (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
83 anidm 674 . . . . . 6 (((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8482, 83bitri 263 . . . . 5 (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8584a1i 11 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
86 tpid3g 4248 . . . . . . . . 9 (𝐴𝑋𝐴 ∈ {𝐵, 𝐶, 𝐴})
8786, 7syl6eleqr 2699 . . . . . . . 8 (𝐴𝑋𝐴 ∈ {𝐴, 𝐵, 𝐶})
88 tpid3g 4248 . . . . . . . . 9 (𝐵𝑌𝐵 ∈ {𝐶, 𝐴, 𝐵})
8988, 24syl6eleqr 2699 . . . . . . . 8 (𝐵𝑌𝐵 ∈ {𝐴, 𝐵, 𝐶})
90 tpid3g 4248 . . . . . . . 8 (𝐶𝑍𝐶 ∈ {𝐴, 𝐵, 𝐶})
9187, 89, 903anim123i 1240 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
92 df-3an 1033 . . . . . . 7 ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ↔ ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
9391, 92sylib 207 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
94 simpr 476 . . . . . . . . . . . 12 ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
9594adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
9695anim1i 590 . . . . . . . . . 10 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ UPGraph ))
9796ancomd 466 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ) → (𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}))
98973adant3 1074 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}))
99 simpll 786 . . . . . . . . . 10 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐴 ∈ {𝐴, 𝐵, 𝐶})
100 simp1 1054 . . . . . . . . . 10 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐴𝐵)
10199, 100anim12i 588 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐴𝐵))
1021013adant2 1073 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐴𝐵))
103 cplgr3v.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
1042, 103nbupgrel 40567 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐴𝐵)) → (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ↔ {𝐴, 𝐵} ∈ 𝐸))
10598, 102, 104syl2anc 691 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ↔ {𝐴, 𝐵} ∈ 𝐸))
106 simpr 476 . . . . . . . . . . 11 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
107106anim1i 590 . . . . . . . . . 10 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ UPGraph ))
108107ancomd 466 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ) → (𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
1091083adant3 1074 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
110 simp3 1056 . . . . . . . . . 10 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐵𝐶)
11195, 110anim12i 588 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵𝐶))
1121113adant2 1073 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵𝐶))
1132, 103nbupgrel 40567 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵𝐶)) → (𝐵 ∈ (𝐺 NeighbVtx 𝐶) ↔ {𝐵, 𝐶} ∈ 𝐸))
114109, 112, 113syl2anc 691 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐵 ∈ (𝐺 NeighbVtx 𝐶) ↔ {𝐵, 𝐶} ∈ 𝐸))
11599anim1i 590 . . . . . . . . . 10 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ) → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ UPGraph ))
116115ancomd 466 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}))
1171163adant3 1074 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}))
118 simp2 1055 . . . . . . . . . . 11 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐴𝐶)
119118necomd 2837 . . . . . . . . . 10 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐶𝐴)
120106, 119anim12i 588 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝐴))
1211203adant2 1073 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝐴))
1222, 103nbupgrel 40567 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝐴)) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸))
123117, 121, 122syl2anc 691 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸))
124105, 114, 1233anbi123d 1391 . . . . . 6 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
12593, 124syl3an1 1351 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
12680, 125syl5bb 271 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
12779, 85, 1263bitrd 293 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
12871, 73, 1273bitrd 293 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
1294, 56, 1283bitrd 293 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896   ∖ cdif 3537  {csn 4125  {cpr 4127  {ctp 4129  ‘cfv 5804  (class class class)co 6549  Vtxcvtx 25673   UPGraph cupgr 25747  Edgcedga 25792   NeighbVtx cnbgr 40550  ComplGraphccplgr 40552 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-hash 12980  df-upgr 25749  df-edga 25793  df-nbgr 40554  df-uvtxa 40556  df-cplgr 40557 This theorem is referenced by:  cusgr3vnbpr  40658
 Copyright terms: Public domain W3C validator