HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnvadj Structured version   Visualization version   GIF version

Theorem cnvadj 28135
Description: The adjoint function equals its converse. (Contributed by NM, 15-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
cnvadj adj = adj

Proof of Theorem cnvadj
Dummy variables 𝑢 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvopab 5452 . . 3 {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
2 3ancoma 1038 . . . . 5 ((𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
3 ffvelrn 6265 . . . . . . . . . . . . . . . . . 18 ((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) → (𝑢𝑦) ∈ ℋ)
4 ax-his1 27323 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑦) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
53, 4sylan 487 . . . . . . . . . . . . . . . . 17 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
65adantrl 748 . . . . . . . . . . . . . . . 16 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝑢𝑦) ·ih 𝑥) = (∗‘(𝑥 ·ih (𝑢𝑦))))
7 ffvelrn 6265 . . . . . . . . . . . . . . . . . 18 ((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℋ)
8 ax-his1 27323 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℋ ∧ (𝑡𝑥) ∈ ℋ) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
97, 8sylan2 490 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
109adantll 746 . . . . . . . . . . . . . . . 16 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (𝑦 ·ih (𝑡𝑥)) = (∗‘((𝑡𝑥) ·ih 𝑦)))
116, 10eqeq12d 2625 . . . . . . . . . . . . . . 15 (((𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ) ∧ (𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ)) → (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦))))
1211ancoms 468 . . . . . . . . . . . . . 14 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦))))
13 hicl 27321 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℋ ∧ (𝑢𝑦) ∈ ℋ) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
143, 13sylan2 490 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℋ ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
1514adantll 746 . . . . . . . . . . . . . . 15 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → (𝑥 ·ih (𝑢𝑦)) ∈ ℂ)
16 hicl 27321 . . . . . . . . . . . . . . . . 17 (((𝑡𝑥) ∈ ℋ ∧ 𝑦 ∈ ℋ) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
177, 16sylan 487 . . . . . . . . . . . . . . . 16 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
1817adantrl 748 . . . . . . . . . . . . . . 15 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑡𝑥) ·ih 𝑦) ∈ ℂ)
19 cj11 13750 . . . . . . . . . . . . . . 15 (((𝑥 ·ih (𝑢𝑦)) ∈ ℂ ∧ ((𝑡𝑥) ·ih 𝑦) ∈ ℂ) → ((∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
2015, 18, 19syl2anc 691 . . . . . . . . . . . . . 14 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((∗‘(𝑥 ·ih (𝑢𝑦))) = (∗‘((𝑡𝑥) ·ih 𝑦)) ↔ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
2112, 20bitr2d 268 . . . . . . . . . . . . 13 (((𝑡: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝑢: ℋ⟶ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
2221an4s 865 . . . . . . . . . . . 12 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ (𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ)) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
2322anassrs 678 . . . . . . . . . . 11 ((((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥))))
24 eqcom 2617 . . . . . . . . . . 11 (((𝑢𝑦) ·ih 𝑥) = (𝑦 ·ih (𝑡𝑥)) ↔ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))
2523, 24syl6bb 275 . . . . . . . . . 10 ((((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) ∧ 𝑦 ∈ ℋ) → ((𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
2625ralbidva 2968 . . . . . . . . 9 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
2726ralbidva 2968 . . . . . . . 8 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
28 ralcom 3079 . . . . . . . 8 (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))
2927, 28syl6bb 275 . . . . . . 7 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦) ↔ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3029pm5.32i 667 . . . . . 6 (((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
31 df-3an 1033 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)))
32 df-3an 1033 . . . . . 6 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)) ↔ ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ) ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3330, 31, 323bitr4i 291 . . . . 5 ((𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
342, 33bitri 263 . . . 4 ((𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦)) ↔ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥)))
3534opabbii 4649 . . 3 {⟨𝑡, 𝑢⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
361, 35eqtri 2632 . 2 {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))} = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
37 dfadj2 28128 . . 3 adj = {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
3837cnveqi 5219 . 2 adj = {⟨𝑢, 𝑡⟩ ∣ (𝑢: ℋ⟶ ℋ ∧ 𝑡: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑢𝑦)) = ((𝑡𝑥) ·ih 𝑦))}
39 dfadj2 28128 . 2 adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑦 ∈ ℋ ∀𝑥 ∈ ℋ (𝑦 ·ih (𝑡𝑥)) = ((𝑢𝑦) ·ih 𝑥))}
4036, 38, 393eqtr4i 2642 1 adj = adj
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  {copab 4642  ccnv 5037  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  ccj 13684  chil 27160   ·ih csp 27163  adjcado 27196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hfi 27320  ax-his1 27323
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689  df-adjh 28092
This theorem is referenced by:  funcnvadj  28136  adj1o  28137  adjbdlnb  28327
  Copyright terms: Public domain W3C validator