Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjadd Structured version   Visualization version   GIF version

 Description: Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
cjadd ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))

StepHypRef Expression
1 readd 13714 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵)))
2 imadd 13722 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
32oveq2d 6565 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 + 𝐵))) = (i · ((ℑ‘𝐴) + (ℑ‘𝐵))))
4 ax-icn 9874 . . . . . . 7 i ∈ ℂ
54a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
6 imcl 13699 . . . . . . . 8 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
76adantr 480 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
87recnd 9947 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
9 imcl 13699 . . . . . . . 8 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
109adantl 481 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1110recnd 9947 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
125, 8, 11adddid 9943 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℑ‘𝐴) + (ℑ‘𝐵))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵))))
133, 12eqtrd 2644 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 + 𝐵))) = ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵))))
141, 13oveq12d 6567 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))) = (((ℜ‘𝐴) + (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵)))))
15 recl 13698 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
1615adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
1716recnd 9947 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
18 recl 13698 . . . . . 6 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1918adantl 481 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
2019recnd 9947 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
21 mulcl 9899 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
224, 8, 21sylancr 694 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
23 mulcl 9899 . . . . 5 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
244, 11, 23sylancr 694 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
2517, 20, 22, 24addsub4d 10318 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) + (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
2614, 25eqtrd 2644 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
27 addcl 9897 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
28 remim 13705 . . 3 ((𝐴 + 𝐵) ∈ ℂ → (∗‘(𝐴 + 𝐵)) = ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))))
2927, 28syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((ℜ‘(𝐴 + 𝐵)) − (i · (ℑ‘(𝐴 + 𝐵)))))
30 remim 13705 . . 3 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
31 remim 13705 . . 3 (𝐵 ∈ ℂ → (∗‘𝐵) = ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))
3230, 31oveqan12d 6568 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) + (∗‘𝐵)) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) + ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
3326, 29, 323eqtr4d 2654 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  ici 9817   + caddc 9818   · cmul 9820   − cmin 10145  ∗ccj 13684  ℜcre 13685  ℑcim 13686 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689 This theorem is referenced by:  cjsub  13737  cjreim  13748  cjaddi  13776  cjaddd  13808  sqabsadd  13870  sqreulem  13947  fsumcj  14383  efcj  14661  cnsrng  19599  atancj  24437  his7  27331  sigaraf  39691
 Copyright terms: Public domain W3C validator