MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfsuc Structured version   Visualization version   GIF version

Theorem cfsuc 8962
Description: Value of the cofinality function at a successor ordinal. Exercise 3 of [TakeutiZaring] p. 102. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 12-Feb-2013.)
Assertion
Ref Expression
cfsuc (𝐴 ∈ On → (cf‘suc 𝐴) = 1𝑜)

Proof of Theorem cfsuc
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sucelon 6909 . . 3 (𝐴 ∈ On ↔ suc 𝐴 ∈ On)
2 cfval 8952 . . 3 (suc 𝐴 ∈ On → (cf‘suc 𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
31, 2sylbi 206 . 2 (𝐴 ∈ On → (cf‘suc 𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
4 cardsn 8678 . . . . . 6 (𝐴 ∈ On → (card‘{𝐴}) = 1𝑜)
54eqcomd 2616 . . . . 5 (𝐴 ∈ On → 1𝑜 = (card‘{𝐴}))
6 snidg 4153 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ {𝐴})
7 elsuci 5708 . . . . . . . . 9 (𝑧 ∈ suc 𝐴 → (𝑧𝐴𝑧 = 𝐴))
8 onelss 5683 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧𝐴𝑧𝐴))
9 eqimss 3620 . . . . . . . . . . 11 (𝑧 = 𝐴𝑧𝐴)
109a1i 11 . . . . . . . . . 10 (𝐴 ∈ On → (𝑧 = 𝐴𝑧𝐴))
118, 10jaod 394 . . . . . . . . 9 (𝐴 ∈ On → ((𝑧𝐴𝑧 = 𝐴) → 𝑧𝐴))
127, 11syl5 33 . . . . . . . 8 (𝐴 ∈ On → (𝑧 ∈ suc 𝐴𝑧𝐴))
13 sseq2 3590 . . . . . . . . 9 (𝑤 = 𝐴 → (𝑧𝑤𝑧𝐴))
1413rspcev 3282 . . . . . . . 8 ((𝐴 ∈ {𝐴} ∧ 𝑧𝐴) → ∃𝑤 ∈ {𝐴}𝑧𝑤)
156, 12, 14syl6an 566 . . . . . . 7 (𝐴 ∈ On → (𝑧 ∈ suc 𝐴 → ∃𝑤 ∈ {𝐴}𝑧𝑤))
1615ralrimiv 2948 . . . . . 6 (𝐴 ∈ On → ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)
17 ssun2 3739 . . . . . . 7 {𝐴} ⊆ (𝐴 ∪ {𝐴})
18 df-suc 5646 . . . . . . 7 suc 𝐴 = (𝐴 ∪ {𝐴})
1917, 18sseqtr4i 3601 . . . . . 6 {𝐴} ⊆ suc 𝐴
2016, 19jctil 558 . . . . 5 (𝐴 ∈ On → ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))
21 snex 4835 . . . . . 6 {𝐴} ∈ V
22 fveq2 6103 . . . . . . . 8 (𝑦 = {𝐴} → (card‘𝑦) = (card‘{𝐴}))
2322eqeq2d 2620 . . . . . . 7 (𝑦 = {𝐴} → (1𝑜 = (card‘𝑦) ↔ 1𝑜 = (card‘{𝐴})))
24 sseq1 3589 . . . . . . . 8 (𝑦 = {𝐴} → (𝑦 ⊆ suc 𝐴 ↔ {𝐴} ⊆ suc 𝐴))
25 rexeq 3116 . . . . . . . . 9 (𝑦 = {𝐴} → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ {𝐴}𝑧𝑤))
2625ralbidv 2969 . . . . . . . 8 (𝑦 = {𝐴} → (∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))
2724, 26anbi12d 743 . . . . . . 7 (𝑦 = {𝐴} → ((𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤) ↔ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)))
2823, 27anbi12d 743 . . . . . 6 (𝑦 = {𝐴} → ((1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (1𝑜 = (card‘{𝐴}) ∧ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤))))
2921, 28spcev 3273 . . . . 5 ((1𝑜 = (card‘{𝐴}) ∧ ({𝐴} ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ {𝐴}𝑧𝑤)) → ∃𝑦(1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
305, 20, 29syl2anc 691 . . . 4 (𝐴 ∈ On → ∃𝑦(1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
31 1on 7454 . . . . . 6 1𝑜 ∈ On
3231elexi 3186 . . . . 5 1𝑜 ∈ V
33 eqeq1 2614 . . . . . . 7 (𝑥 = 1𝑜 → (𝑥 = (card‘𝑦) ↔ 1𝑜 = (card‘𝑦)))
3433anbi1d 737 . . . . . 6 (𝑥 = 1𝑜 → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
3534exbidv 1837 . . . . 5 (𝑥 = 1𝑜 → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
3632, 35elab 3319 . . . 4 (1𝑜 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(1𝑜 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
3730, 36sylibr 223 . . 3 (𝐴 ∈ On → 1𝑜 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
38 el1o 7466 . . . . 5 (𝑣 ∈ 1𝑜𝑣 = ∅)
39 eqcom 2617 . . . . . . . . . . . . . . 15 (∅ = (card‘𝑦) ↔ (card‘𝑦) = ∅)
40 vex 3176 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
41 onssnum 8746 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
4240, 41mpan 702 . . . . . . . . . . . . . . . 16 (𝑦 ⊆ On → 𝑦 ∈ dom card)
43 cardnueq0 8673 . . . . . . . . . . . . . . . 16 (𝑦 ∈ dom card → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4442, 43syl 17 . . . . . . . . . . . . . . 15 (𝑦 ⊆ On → ((card‘𝑦) = ∅ ↔ 𝑦 = ∅))
4539, 44syl5bb 271 . . . . . . . . . . . . . 14 (𝑦 ⊆ On → (∅ = (card‘𝑦) ↔ 𝑦 = ∅))
4645biimpa 500 . . . . . . . . . . . . 13 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → 𝑦 = ∅)
47 rex0 3894 . . . . . . . . . . . . . . . . 17 ¬ ∃𝑤 ∈ ∅ 𝑧𝑤
4847a1i 11 . . . . . . . . . . . . . . . 16 (𝑧 ∈ suc 𝐴 → ¬ ∃𝑤 ∈ ∅ 𝑧𝑤)
4948nrex 2983 . . . . . . . . . . . . . . 15 ¬ ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤
50 nsuceq0 5722 . . . . . . . . . . . . . . . 16 suc 𝐴 ≠ ∅
51 r19.2z 4012 . . . . . . . . . . . . . . . 16 ((suc 𝐴 ≠ ∅ ∧ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤) → ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤)
5250, 51mpan 702 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤 → ∃𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤)
5349, 52mto 187 . . . . . . . . . . . . . 14 ¬ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤
54 rexeq 3116 . . . . . . . . . . . . . . 15 (𝑦 = ∅ → (∃𝑤𝑦 𝑧𝑤 ↔ ∃𝑤 ∈ ∅ 𝑧𝑤))
5554ralbidv 2969 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤 ↔ ∀𝑧 ∈ suc 𝐴𝑤 ∈ ∅ 𝑧𝑤))
5653, 55mtbiri 316 . . . . . . . . . . . . 13 (𝑦 = ∅ → ¬ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)
5746, 56syl 17 . . . . . . . . . . . 12 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)
5857intnand 953 . . . . . . . . . . 11 ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
59 imnan 437 . . . . . . . . . . 11 (((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) → ¬ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ¬ ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
6058, 59mpbi 219 . . . . . . . . . 10 ¬ ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
61 suceloni 6905 . . . . . . . . . . . . . . . 16 (𝐴 ∈ On → suc 𝐴 ∈ On)
62 onss 6882 . . . . . . . . . . . . . . . . 17 (suc 𝐴 ∈ On → suc 𝐴 ⊆ On)
63 sstr 3576 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ⊆ On) → 𝑦 ⊆ On)
6462, 63sylan2 490 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ suc 𝐴 ∧ suc 𝐴 ∈ On) → 𝑦 ⊆ On)
6561, 64sylan2 490 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ suc 𝐴𝐴 ∈ On) → 𝑦 ⊆ On)
6665ancoms 468 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑦 ⊆ suc 𝐴) → 𝑦 ⊆ On)
6766adantrr 749 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
68673adant2 1073 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑦 ⊆ On)
69 simp2 1055 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ∅ = (card‘𝑦))
70 simp3 1056 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))
7168, 69, 70jca31 555 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ ∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
72713expib 1260 . . . . . . . . . 10 (𝐴 ∈ On → ((∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → ((𝑦 ⊆ On ∧ ∅ = (card‘𝑦)) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7360, 72mtoi 189 . . . . . . . . 9 (𝐴 ∈ On → ¬ (∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
7473nexdv 1851 . . . . . . . 8 (𝐴 ∈ On → ¬ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
75 0ex 4718 . . . . . . . . 9 ∅ ∈ V
76 eqeq1 2614 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥 = (card‘𝑦) ↔ ∅ = (card‘𝑦)))
7776anbi1d 737 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ (∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7877exbidv 1837 . . . . . . . . 9 (𝑥 = ∅ → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))))
7975, 78elab 3319 . . . . . . . 8 (∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∃𝑦(∅ = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)))
8074, 79sylnibr 318 . . . . . . 7 (𝐴 ∈ On → ¬ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8180adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝑣 = ∅) → ¬ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
82 eleq1 2676 . . . . . . 7 (𝑣 = ∅ → (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
8382adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝑣 = ∅) → (𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ↔ ∅ ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
8481, 83mtbird 314 . . . . 5 ((𝐴 ∈ On ∧ 𝑣 = ∅) → ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8538, 84sylan2b 491 . . . 4 ((𝐴 ∈ On ∧ 𝑣 ∈ 1𝑜) → ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
8685ralrimiva 2949 . . 3 (𝐴 ∈ On → ∀𝑣 ∈ 1𝑜 ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
87 cardon 8653 . . . . . . . 8 (card‘𝑦) ∈ On
88 eleq1 2676 . . . . . . . 8 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
8987, 88mpbiri 247 . . . . . . 7 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
9089adantr 480 . . . . . 6 ((𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑥 ∈ On)
9190exlimiv 1845 . . . . 5 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤)) → 𝑥 ∈ On)
9291abssi 3640 . . . 4 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ⊆ On
93 oneqmini 5693 . . . 4 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ⊆ On → ((1𝑜 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ∧ ∀𝑣 ∈ 1𝑜 ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}) → 1𝑜 = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}))
9492, 93ax-mp 5 . . 3 ((1𝑜 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))} ∧ ∀𝑣 ∈ 1𝑜 ¬ 𝑣 ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))}) → 1𝑜 = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
9537, 86, 94syl2anc 691 . 2 (𝐴 ∈ On → 1𝑜 = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ suc 𝐴 ∧ ∀𝑧 ∈ suc 𝐴𝑤𝑦 𝑧𝑤))})
963, 95eqtr4d 2647 1 (𝐴 ∈ On → (cf‘suc 𝐴) = 1𝑜)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cun 3538  wss 3540  c0 3874  {csn 4125   cint 4410  dom cdm 5038  Oncon0 5640  suc csuc 5642  cfv 5804  1𝑜c1o 7440  cardccrd 8644  cfccf 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-om 6958  df-wrecs 7294  df-recs 7355  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cf 8650
This theorem is referenced by:  cflim2  8968  cfpwsdom  9285  rankcf  9478
  Copyright terms: Public domain W3C validator