MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankcf Structured version   Visualization version   GIF version

Theorem rankcf 9478
Description: Any set must be at least as large as the cofinality of its rank, because the ranks of the elements of 𝐴 form a cofinal map into (rank‘𝐴). (Contributed by Mario Carneiro, 27-May-2013.)
Assertion
Ref Expression
rankcf ¬ 𝐴 ≺ (cf‘(rank‘𝐴))

Proof of Theorem rankcf
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankon 8541 . . 3 (rank‘𝐴) ∈ On
2 onzsl 6938 . . 3 ((rank‘𝐴) ∈ On ↔ ((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴))))
31, 2mpbi 219 . 2 ((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴)))
4 sdom0 7977 . . . 4 ¬ 𝐴 ≺ ∅
5 fveq2 6103 . . . . . 6 ((rank‘𝐴) = ∅ → (cf‘(rank‘𝐴)) = (cf‘∅))
6 cf0 8956 . . . . . 6 (cf‘∅) = ∅
75, 6syl6eq 2660 . . . . 5 ((rank‘𝐴) = ∅ → (cf‘(rank‘𝐴)) = ∅)
87breq2d 4595 . . . 4 ((rank‘𝐴) = ∅ → (𝐴 ≺ (cf‘(rank‘𝐴)) ↔ 𝐴 ≺ ∅))
94, 8mtbiri 316 . . 3 ((rank‘𝐴) = ∅ → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
10 fveq2 6103 . . . . . . 7 ((rank‘𝐴) = suc 𝑥 → (cf‘(rank‘𝐴)) = (cf‘suc 𝑥))
11 cfsuc 8962 . . . . . . 7 (𝑥 ∈ On → (cf‘suc 𝑥) = 1𝑜)
1210, 11sylan9eqr 2666 . . . . . 6 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → (cf‘(rank‘𝐴)) = 1𝑜)
13 nsuceq0 5722 . . . . . . . . 9 suc 𝑥 ≠ ∅
14 neeq1 2844 . . . . . . . . 9 ((rank‘𝐴) = suc 𝑥 → ((rank‘𝐴) ≠ ∅ ↔ suc 𝑥 ≠ ∅))
1513, 14mpbiri 247 . . . . . . . 8 ((rank‘𝐴) = suc 𝑥 → (rank‘𝐴) ≠ ∅)
16 fveq2 6103 . . . . . . . . . . 11 (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅))
17 0elon 5695 . . . . . . . . . . . . 13 ∅ ∈ On
18 r1fnon 8513 . . . . . . . . . . . . . 14 𝑅1 Fn On
19 fndm 5904 . . . . . . . . . . . . . 14 (𝑅1 Fn On → dom 𝑅1 = On)
2018, 19ax-mp 5 . . . . . . . . . . . . 13 dom 𝑅1 = On
2117, 20eleqtrri 2687 . . . . . . . . . . . 12 ∅ ∈ dom 𝑅1
22 rankonid 8575 . . . . . . . . . . . 12 (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅)
2321, 22mpbi 219 . . . . . . . . . . 11 (rank‘∅) = ∅
2416, 23syl6eq 2660 . . . . . . . . . 10 (𝐴 = ∅ → (rank‘𝐴) = ∅)
2524necon3i 2814 . . . . . . . . 9 ((rank‘𝐴) ≠ ∅ → 𝐴 ≠ ∅)
26 rankvaln 8545 . . . . . . . . . . 11 𝐴 (𝑅1 “ On) → (rank‘𝐴) = ∅)
2726necon1ai 2809 . . . . . . . . . 10 ((rank‘𝐴) ≠ ∅ → 𝐴 (𝑅1 “ On))
28 breq2 4587 . . . . . . . . . . 11 (𝑦 = 𝐴 → (1𝑜𝑦 ↔ 1𝑜𝐴))
29 neeq1 2844 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅))
30 0sdom1dom 8043 . . . . . . . . . . . 12 (∅ ≺ 𝑦 ↔ 1𝑜𝑦)
31 vex 3176 . . . . . . . . . . . . 13 𝑦 ∈ V
32310sdom 7976 . . . . . . . . . . . 12 (∅ ≺ 𝑦𝑦 ≠ ∅)
3330, 32bitr3i 265 . . . . . . . . . . 11 (1𝑜𝑦𝑦 ≠ ∅)
3428, 29, 33vtoclbg 3240 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (1𝑜𝐴𝐴 ≠ ∅))
3527, 34syl 17 . . . . . . . . 9 ((rank‘𝐴) ≠ ∅ → (1𝑜𝐴𝐴 ≠ ∅))
3625, 35mpbird 246 . . . . . . . 8 ((rank‘𝐴) ≠ ∅ → 1𝑜𝐴)
3715, 36syl 17 . . . . . . 7 ((rank‘𝐴) = suc 𝑥 → 1𝑜𝐴)
3837adantl 481 . . . . . 6 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → 1𝑜𝐴)
3912, 38eqbrtrd 4605 . . . . 5 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → (cf‘(rank‘𝐴)) ≼ 𝐴)
4039rexlimiva 3010 . . . 4 (∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 → (cf‘(rank‘𝐴)) ≼ 𝐴)
41 domnsym 7971 . . . 4 ((cf‘(rank‘𝐴)) ≼ 𝐴 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
4240, 41syl 17 . . 3 (∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
43 nlim0 5700 . . . . . . . . . . . . . . . . 17 ¬ Lim ∅
44 limeq 5652 . . . . . . . . . . . . . . . . 17 ((rank‘𝐴) = ∅ → (Lim (rank‘𝐴) ↔ Lim ∅))
4543, 44mtbiri 316 . . . . . . . . . . . . . . . 16 ((rank‘𝐴) = ∅ → ¬ Lim (rank‘𝐴))
4626, 45syl 17 . . . . . . . . . . . . . . 15 𝐴 (𝑅1 “ On) → ¬ Lim (rank‘𝐴))
4746con4i 112 . . . . . . . . . . . . . 14 (Lim (rank‘𝐴) → 𝐴 (𝑅1 “ On))
48 r1elssi 8551 . . . . . . . . . . . . . 14 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
4947, 48syl 17 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → 𝐴 (𝑅1 “ On))
5049sselda 3568 . . . . . . . . . . . 12 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → 𝑥 (𝑅1 “ On))
51 ranksnb 8573 . . . . . . . . . . . 12 (𝑥 (𝑅1 “ On) → (rank‘{𝑥}) = suc (rank‘𝑥))
5250, 51syl 17 . . . . . . . . . . 11 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (rank‘{𝑥}) = suc (rank‘𝑥))
53 rankelb 8570 . . . . . . . . . . . . . 14 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
5447, 53syl 17 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
55 limsuc 6941 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → ((rank‘𝑥) ∈ (rank‘𝐴) ↔ suc (rank‘𝑥) ∈ (rank‘𝐴)))
5654, 55sylibd 228 . . . . . . . . . . . 12 (Lim (rank‘𝐴) → (𝑥𝐴 → suc (rank‘𝑥) ∈ (rank‘𝐴)))
5756imp 444 . . . . . . . . . . 11 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → suc (rank‘𝑥) ∈ (rank‘𝐴))
5852, 57eqeltrd 2688 . . . . . . . . . 10 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (rank‘{𝑥}) ∈ (rank‘𝐴))
59 eleq1a 2683 . . . . . . . . . 10 ((rank‘{𝑥}) ∈ (rank‘𝐴) → (𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6058, 59syl 17 . . . . . . . . 9 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6160rexlimdva 3013 . . . . . . . 8 (Lim (rank‘𝐴) → (∃𝑥𝐴 𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6261abssdv 3639 . . . . . . 7 (Lim (rank‘𝐴) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴))
63 snex 4835 . . . . . . . . . . . . 13 {𝑥} ∈ V
6463dfiun2 4490 . . . . . . . . . . . 12 𝑥𝐴 {𝑥} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
65 iunid 4511 . . . . . . . . . . . 12 𝑥𝐴 {𝑥} = 𝐴
6664, 65eqtr3i 2634 . . . . . . . . . . 11 {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} = 𝐴
6766fveq2i 6106 . . . . . . . . . 10 (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = (rank‘𝐴)
6848sselda 3568 . . . . . . . . . . . . . . 15 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → 𝑥 (𝑅1 “ On))
69 snwf 8555 . . . . . . . . . . . . . . 15 (𝑥 (𝑅1 “ On) → {𝑥} ∈ (𝑅1 “ On))
70 eleq1a 2683 . . . . . . . . . . . . . . 15 ({𝑥} ∈ (𝑅1 “ On) → (𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7168, 69, 703syl 18 . . . . . . . . . . . . . 14 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → (𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7271rexlimdva 3013 . . . . . . . . . . . . 13 (𝐴 (𝑅1 “ On) → (∃𝑥𝐴 𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7372abssdv 3639 . . . . . . . . . . . 12 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On))
74 abrexexg 7034 . . . . . . . . . . . . 13 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ V)
75 eleq1 2676 . . . . . . . . . . . . . 14 (𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} → (𝑧 (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On)))
76 sseq1 3589 . . . . . . . . . . . . . 14 (𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} → (𝑧 (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
77 vex 3176 . . . . . . . . . . . . . . 15 𝑧 ∈ V
7877r1elss 8552 . . . . . . . . . . . . . 14 (𝑧 (𝑅1 “ On) ↔ 𝑧 (𝑅1 “ On))
7975, 76, 78vtoclbg 3240 . . . . . . . . . . . . 13 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ V → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
8074, 79syl 17 . . . . . . . . . . . 12 (𝐴 (𝑅1 “ On) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
8173, 80mpbird 246 . . . . . . . . . . 11 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On))
82 rankuni2b 8599 . . . . . . . . . . 11 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) → (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
8381, 82syl 17 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
8467, 83syl5eqr 2658 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
85 fvex 6113 . . . . . . . . . . 11 (rank‘𝑧) ∈ V
8685dfiun2 4490 . . . . . . . . . 10 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧) = {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)}
87 fveq2 6103 . . . . . . . . . . . 12 (𝑧 = {𝑥} → (rank‘𝑧) = (rank‘{𝑥}))
8863, 87abrexco 6406 . . . . . . . . . . 11 {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
8988unieqi 4381 . . . . . . . . . 10 {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
9086, 89eqtri 2632 . . . . . . . . 9 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧) = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
9184, 90syl6req 2661 . . . . . . . 8 (𝐴 (𝑅1 “ On) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴))
9247, 91syl 17 . . . . . . 7 (Lim (rank‘𝐴) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴))
93 fvex 6113 . . . . . . . 8 (rank‘𝐴) ∈ V
9493cfslb 8971 . . . . . . 7 ((Lim (rank‘𝐴) ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴) ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴)) → (cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
9562, 92, 94mpd3an23 1418 . . . . . 6 (Lim (rank‘𝐴) → (cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
96 fveq2 6103 . . . . . . . . . . 11 (𝑦 = 𝐴 → (rank‘𝑦) = (rank‘𝐴))
9796fveq2d 6107 . . . . . . . . . 10 (𝑦 = 𝐴 → (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴)))
98 breq12 4588 . . . . . . . . . 10 ((𝑦 = 𝐴 ∧ (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴))) → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴))))
9997, 98mpdan 699 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴))))
100 rexeq 3116 . . . . . . . . . . 11 (𝑦 = 𝐴 → (∃𝑥𝑦 𝑤 = (rank‘{𝑥}) ↔ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})))
101100abbidv 2728 . . . . . . . . . 10 (𝑦 = 𝐴 → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
102 breq12 4588 . . . . . . . . . 10 (({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ 𝑦 = 𝐴) → ({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
103101, 102mpancom 700 . . . . . . . . 9 (𝑦 = 𝐴 → ({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
10499, 103imbi12d 333 . . . . . . . 8 (𝑦 = 𝐴 → ((𝑦 ≺ (cf‘(rank‘𝑦)) → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦) ↔ (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴)))
105 eqid 2610 . . . . . . . . . 10 (𝑥𝑦 ↦ (rank‘{𝑥})) = (𝑥𝑦 ↦ (rank‘{𝑥}))
106105rnmpt 5292 . . . . . . . . 9 ran (𝑥𝑦 ↦ (rank‘{𝑥})) = {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})}
107 cfon 8960 . . . . . . . . . . 11 (cf‘(rank‘𝑦)) ∈ On
108 sdomdom 7869 . . . . . . . . . . 11 (𝑦 ≺ (cf‘(rank‘𝑦)) → 𝑦 ≼ (cf‘(rank‘𝑦)))
109 ondomen 8743 . . . . . . . . . . 11 (((cf‘(rank‘𝑦)) ∈ On ∧ 𝑦 ≼ (cf‘(rank‘𝑦))) → 𝑦 ∈ dom card)
110107, 108, 109sylancr 694 . . . . . . . . . 10 (𝑦 ≺ (cf‘(rank‘𝑦)) → 𝑦 ∈ dom card)
111 fvex 6113 . . . . . . . . . . . 12 (rank‘{𝑥}) ∈ V
112111, 105fnmpti 5935 . . . . . . . . . . 11 (𝑥𝑦 ↦ (rank‘{𝑥})) Fn 𝑦
113 dffn4 6034 . . . . . . . . . . 11 ((𝑥𝑦 ↦ (rank‘{𝑥})) Fn 𝑦 ↔ (𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥})))
114112, 113mpbi 219 . . . . . . . . . 10 (𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥}))
115 fodomnum 8763 . . . . . . . . . 10 (𝑦 ∈ dom card → ((𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥})) → ran (𝑥𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦))
116110, 114, 115mpisyl 21 . . . . . . . . 9 (𝑦 ≺ (cf‘(rank‘𝑦)) → ran (𝑥𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦)
117106, 116syl5eqbrr 4619 . . . . . . . 8 (𝑦 ≺ (cf‘(rank‘𝑦)) → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦)
118104, 117vtoclg 3239 . . . . . . 7 (𝐴 (𝑅1 “ On) → (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
11947, 118syl 17 . . . . . 6 (Lim (rank‘𝐴) → (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
120 domtr 7895 . . . . . . 7 (((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → (cf‘(rank‘𝐴)) ≼ 𝐴)
121120, 41syl 17 . . . . . 6 (((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
12295, 119, 121syl6an 566 . . . . 5 (Lim (rank‘𝐴) → (𝐴 ≺ (cf‘(rank‘𝐴)) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴))))
123122pm2.01d 180 . . . 4 (Lim (rank‘𝐴) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
124123adantl 481 . . 3 (((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴)) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
1259, 42, 1243jaoi 1383 . 2 (((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴))) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
1263, 125ax-mp 5 1 ¬ 𝐴 ≺ (cf‘(rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3o 1030   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wrex 2897  Vcvv 3173  wss 3540  c0 3874  {csn 4125   cuni 4372   ciun 4455   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cima 5041  Oncon0 5640  Lim wlim 5641  suc csuc 5642   Fn wfn 5799  ontowfo 5802  cfv 5804  1𝑜c1o 7440  cdom 7839  csdm 7840  𝑅1cr1 8508  rankcrnk 8509  cardccrd 8644  cfccf 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-r1 8510  df-rank 8511  df-card 8648  df-cf 8650  df-acn 8651
This theorem is referenced by:  inatsk  9479  grur1  9521
  Copyright terms: Public domain W3C validator