Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfili Structured version   Visualization version   GIF version

Theorem cfili 22874
 Description: Property of a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfili ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐹   𝑥,𝑅,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧

Proof of Theorem cfili
Dummy variables 𝑓 𝑟 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cfil 22861 . . . . . . . 8 CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
21dmmptss 5548 . . . . . . 7 dom CauFil ⊆ ran ∞Met
3 elfvdm 6130 . . . . . . 7 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ dom CauFil)
42, 3sseldi 3566 . . . . . 6 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ran ∞Met)
5 xmetunirn 21952 . . . . . 6 (𝐷 ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷))
64, 5sylib 207 . . . . 5 (𝐹 ∈ (CauFil‘𝐷) → 𝐷 ∈ (∞Met‘dom dom 𝐷))
7 iscfil2 22872 . . . . 5 (𝐷 ∈ (∞Met‘dom dom 𝐷) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)))
86, 7syl 17 . . . 4 (𝐹 ∈ (CauFil‘𝐷) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)))
98ibi 255 . . 3 (𝐹 ∈ (CauFil‘𝐷) → (𝐹 ∈ (Fil‘dom dom 𝐷) ∧ ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟))
109simprd 478 . 2 (𝐹 ∈ (CauFil‘𝐷) → ∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟)
11 breq2 4587 . . . . 5 (𝑟 = 𝑅 → ((𝑦𝐷𝑧) < 𝑟 ↔ (𝑦𝐷𝑧) < 𝑅))
12112ralbidv 2972 . . . 4 (𝑟 = 𝑅 → (∀𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟 ↔ ∀𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅))
1312rexbidv 3034 . . 3 (𝑟 = 𝑅 → (∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟 ↔ ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅))
1413rspccva 3281 . 2 ((∀𝑟 ∈ ℝ+𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑟𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
1510, 14sylan 487 1 ((𝐹 ∈ (CauFil‘𝐷) ∧ 𝑅 ∈ ℝ+) → ∃𝑥𝐹𝑦𝑥𝑧𝑥 (𝑦𝐷𝑧) < 𝑅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  {crab 2900   ⊆ wss 3540  ∪ cuni 4372   class class class wbr 4583   × cxp 5036  dom cdm 5038  ran crn 5039   “ cima 5041  ‘cfv 5804  (class class class)co 6549  0cc0 9815   < clt 9953  ℝ+crp 11708  [,)cico 12048  ∞Metcxmt 19552  Filcfil 21459  CauFilccfil 22858 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ico 12052  df-xmet 19560  df-fbas 19564  df-fil 21460  df-cfil 22861 This theorem is referenced by:  cfil3i  22875  fgcfil  22877  iscmet3  22899  cfilres  22902
 Copyright terms: Public domain W3C validator