MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfili Structured version   Unicode version

Theorem cfili 21876
Description: Property of a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
cfili  |-  ( ( F  e.  (CauFil `  D )  /\  R  e.  RR+ )  ->  E. x  e.  F  A. y  e.  x  A. z  e.  x  ( y D z )  < 
R )
Distinct variable groups:    x, y,
z, F    x, R, y, z    x, D, y, z

Proof of Theorem cfili
Dummy variables  f 
r  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cfil 21863 . . . . . . . 8  |- CauFil  =  ( d  e.  U. ran  *Met  |->  { f  e.  ( Fil `  dom  dom  d )  |  A. x  e.  RR+  E. y  e.  f  ( d " ( y  X.  y ) )  C_  ( 0 [,) x
) } )
21dmmptss 5486 . . . . . . 7  |-  dom CauFil  C_  U. ran  *Met
3 elfvdm 5874 . . . . . . 7  |-  ( F  e.  (CauFil `  D
)  ->  D  e.  dom CauFil )
42, 3sseldi 3487 . . . . . 6  |-  ( F  e.  (CauFil `  D
)  ->  D  e.  U.
ran  *Met )
5 xmetunirn 21009 . . . . . 6  |-  ( D  e.  U. ran  *Met 
<->  D  e.  ( *Met `  dom  dom  D ) )
64, 5sylib 196 . . . . 5  |-  ( F  e.  (CauFil `  D
)  ->  D  e.  ( *Met `  dom  dom 
D ) )
7 iscfil2 21874 . . . . 5  |-  ( D  e.  ( *Met ` 
dom  dom  D )  -> 
( F  e.  (CauFil `  D )  <->  ( F  e.  ( Fil `  dom  dom 
D )  /\  A. r  e.  RR+  E. x  e.  F  A. y  e.  x  A. z  e.  x  ( y D z )  < 
r ) ) )
86, 7syl 16 . . . 4  |-  ( F  e.  (CauFil `  D
)  ->  ( F  e.  (CauFil `  D )  <->  ( F  e.  ( Fil `  dom  dom  D )  /\  A. r  e.  RR+  E. x  e.  F  A. y  e.  x  A. z  e.  x  (
y D z )  <  r ) ) )
98ibi 241 . . 3  |-  ( F  e.  (CauFil `  D
)  ->  ( F  e.  ( Fil `  dom  dom 
D )  /\  A. r  e.  RR+  E. x  e.  F  A. y  e.  x  A. z  e.  x  ( y D z )  < 
r ) )
109simprd 461 . 2  |-  ( F  e.  (CauFil `  D
)  ->  A. r  e.  RR+  E. x  e.  F  A. y  e.  x  A. z  e.  x  ( y D z )  <  r
)
11 breq2 4443 . . . . 5  |-  ( r  =  R  ->  (
( y D z )  <  r  <->  ( y D z )  < 
R ) )
12112ralbidv 2898 . . . 4  |-  ( r  =  R  ->  ( A. y  e.  x  A. z  e.  x  ( y D z )  <  r  <->  A. y  e.  x  A. z  e.  x  ( y D z )  < 
R ) )
1312rexbidv 2965 . . 3  |-  ( r  =  R  ->  ( E. x  e.  F  A. y  e.  x  A. z  e.  x  ( y D z )  <  r  <->  E. x  e.  F  A. y  e.  x  A. z  e.  x  ( y D z )  < 
R ) )
1413rspccva 3206 . 2  |-  ( ( A. r  e.  RR+  E. x  e.  F  A. y  e.  x  A. z  e.  x  (
y D z )  <  r  /\  R  e.  RR+ )  ->  E. x  e.  F  A. y  e.  x  A. z  e.  x  ( y D z )  < 
R )
1510, 14sylan 469 1  |-  ( ( F  e.  (CauFil `  D )  /\  R  e.  RR+ )  ->  E. x  e.  F  A. y  e.  x  A. z  e.  x  ( y D z )  < 
R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   {crab 2808    C_ wss 3461   U.cuni 4235   class class class wbr 4439    X. cxp 4986   dom cdm 4988   ran crn 4989   "cima 4991   ` cfv 5570  (class class class)co 6270   0cc0 9481    < clt 9617   RR+crp 11221   [,)cico 11534   *Metcxmt 18601   Filcfil 20515  CauFilccfil 21860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-po 4789  df-so 4790  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-2 10590  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ico 11538  df-xmet 18610  df-fbas 18614  df-fil 20516  df-cfil 21863
This theorem is referenced by:  cfil3i  21877  fgcfil  21879  iscmet3  21901  cfilres  21904
  Copyright terms: Public domain W3C validator