Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnflt2 Structured version   Visualization version   GIF version

Theorem cantnflt2 8453
 Description: An upper bound on the CNF function. (Contributed by Mario Carneiro, 28-May-2015.) (Revised by AV, 29-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnflt2.f (𝜑𝐹𝑆)
cantnflt2.a (𝜑 → ∅ ∈ 𝐴)
cantnflt2.c (𝜑𝐶 ∈ On)
cantnflt2.s (𝜑 → (𝐹 supp ∅) ⊆ 𝐶)
Assertion
Ref Expression
cantnflt2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴𝑜 𝐶))

Proof of Theorem cantnflt2
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
3 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
4 eqid 2610 . . 3 OrdIso( E , (𝐹 supp ∅)) = OrdIso( E , (𝐹 supp ∅))
5 cantnflt2.f . . 3 (𝜑𝐹𝑆)
6 eqid 2610 . . 3 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)
71, 2, 3, 4, 5, 6cantnfval 8448 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))))
8 cantnflt2.a . . 3 (𝜑 → ∅ ∈ 𝐴)
9 cantnflt2.c . . . . 5 (𝜑𝐶 ∈ On)
10 cantnflt2.s . . . . 5 (𝜑 → (𝐹 supp ∅) ⊆ 𝐶)
119, 10ssexd 4733 . . . 4 (𝜑 → (𝐹 supp ∅) ∈ V)
124oion 8324 . . . 4 ((𝐹 supp ∅) ∈ V → dom OrdIso( E , (𝐹 supp ∅)) ∈ On)
13 sucidg 5720 . . . 4 (dom OrdIso( E , (𝐹 supp ∅)) ∈ On → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅)))
1411, 12, 133syl 18 . . 3 (𝜑 → dom OrdIso( E , (𝐹 supp ∅)) ∈ suc dom OrdIso( E , (𝐹 supp ∅)))
151, 2, 3, 4, 5cantnfcl 8447 . . . . . . 7 (𝜑 → ( E We (𝐹 supp ∅) ∧ dom OrdIso( E , (𝐹 supp ∅)) ∈ ω))
1615simpld 474 . . . . . 6 (𝜑 → E We (𝐹 supp ∅))
174oiiso 8325 . . . . . 6 (((𝐹 supp ∅) ∈ V ∧ E We (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)))
1811, 16, 17syl2anc 691 . . . . 5 (𝜑 → OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)))
19 isof1o 6473 . . . . 5 (OrdIso( E , (𝐹 supp ∅)) Isom E , E (dom OrdIso( E , (𝐹 supp ∅)), (𝐹 supp ∅)) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅))
20 f1ofo 6057 . . . . 5 (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–1-1-onto→(𝐹 supp ∅) → OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅))
21 foima 6033 . . . . 5 (OrdIso( E , (𝐹 supp ∅)):dom OrdIso( E , (𝐹 supp ∅))–onto→(𝐹 supp ∅) → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅))
2218, 19, 20, 214syl 19 . . . 4 (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) = (𝐹 supp ∅))
2322, 10eqsstrd 3602 . . 3 (𝜑 → (OrdIso( E , (𝐹 supp ∅)) “ dom OrdIso( E , (𝐹 supp ∅))) ⊆ 𝐶)
241, 2, 3, 4, 5, 6, 8, 14, 9, 23cantnflt 8452 . 2 (𝜑 → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝐹 supp ∅))‘𝑘)) ·𝑜 (𝐹‘(OrdIso( E , (𝐹 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , (𝐹 supp ∅))) ∈ (𝐴𝑜 𝐶))
257, 24eqeltrd 2688 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴𝑜 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540  ∅c0 3874   E cep 4947   We wwe 4996  dom cdm 5038   “ cima 5041  Oncon0 5640  suc csuc 5642  –onto→wfo 5802  –1-1-onto→wf1o 5803  ‘cfv 5804   Isom wiso 5805  (class class class)co 6549   ↦ cmpt2 6551  ωcom 6957   supp csupp 7182  seq𝜔cseqom 7429   +𝑜 coa 7444   ·𝑜 comu 7445   ↑𝑜 coe 7446  OrdIsocoi 8297   CNF ccnf 8441 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-oexp 7453  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-cnf 8442 This theorem is referenced by:  cantnff  8454  cantnflem1d  8468  cnfcom3lem  8483
 Copyright terms: Public domain W3C validator