Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj529 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj529.1 | ⊢ 𝐷 = (ω ∖ {∅}) |
Ref | Expression |
---|---|
bnj529 | ⊢ (𝑀 ∈ 𝐷 → ∅ ∈ 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4260 | . . . 4 ⊢ (𝑀 ∈ (ω ∖ {∅}) ↔ (𝑀 ∈ ω ∧ 𝑀 ≠ ∅)) | |
2 | 1 | biimpi 205 | . . 3 ⊢ (𝑀 ∈ (ω ∖ {∅}) → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅)) |
3 | bnj529.1 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
4 | 2, 3 | eleq2s 2706 | . 2 ⊢ (𝑀 ∈ 𝐷 → (𝑀 ∈ ω ∧ 𝑀 ≠ ∅)) |
5 | nnord 6965 | . . 3 ⊢ (𝑀 ∈ ω → Ord 𝑀) | |
6 | 5 | anim1i 590 | . 2 ⊢ ((𝑀 ∈ ω ∧ 𝑀 ≠ ∅) → (Ord 𝑀 ∧ 𝑀 ≠ ∅)) |
7 | ord0eln0 5696 | . . 3 ⊢ (Ord 𝑀 → (∅ ∈ 𝑀 ↔ 𝑀 ≠ ∅)) | |
8 | 7 | biimpar 501 | . 2 ⊢ ((Ord 𝑀 ∧ 𝑀 ≠ ∅) → ∅ ∈ 𝑀) |
9 | 4, 6, 8 | 3syl 18 | 1 ⊢ (𝑀 ∈ 𝐷 → ∅ ∈ 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∖ cdif 3537 ∅c0 3874 {csn 4125 Ord word 5639 ωcom 6957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-tr 4681 df-eprel 4949 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-om 6958 |
This theorem is referenced by: bnj545 30219 bnj900 30253 bnj929 30260 |
Copyright terms: Public domain | W3C validator |