Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj545 Structured version   Visualization version   GIF version

Theorem bnj545 30219
Description: Technical lemma for bnj852 30245. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj545.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj545.2 𝐷 = (ω ∖ {∅})
bnj545.3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj545.4 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj545.5 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj545.6 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
bnj545.7 (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj545 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑″)

Proof of Theorem bnj545
StepHypRef Expression
1 bnj545.4 . . . . . . . . . 10 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
21simp1bi 1069 . . . . . . . . 9 (𝜏𝑓 Fn 𝑚)
3 bnj545.5 . . . . . . . . . 10 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
43simp1bi 1069 . . . . . . . . 9 (𝜎𝑚𝐷)
52, 4anim12i 588 . . . . . . . 8 ((𝜏𝜎) → (𝑓 Fn 𝑚𝑚𝐷))
653adant1 1072 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝑓 Fn 𝑚𝑚𝐷))
7 bnj545.2 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
87bnj529 30065 . . . . . . . 8 (𝑚𝐷 → ∅ ∈ 𝑚)
9 fndm 5904 . . . . . . . 8 (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚)
10 eleq2 2677 . . . . . . . . 9 (dom 𝑓 = 𝑚 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑚))
1110biimparc 503 . . . . . . . 8 ((∅ ∈ 𝑚 ∧ dom 𝑓 = 𝑚) → ∅ ∈ dom 𝑓)
128, 9, 11syl2anr 494 . . . . . . 7 ((𝑓 Fn 𝑚𝑚𝐷) → ∅ ∈ dom 𝑓)
136, 12syl 17 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜎) → ∅ ∈ dom 𝑓)
14 bnj545.6 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
1514bnj930 30094 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜎) → Fun 𝐺)
1613, 15jca 553 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜎) → (∅ ∈ dom 𝑓 ∧ Fun 𝐺))
17 bnj545.3 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
1817bnj931 30095 . . . . 5 𝑓𝐺
1916, 18jctil 558 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝑓𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺)))
20 df-3an 1033 . . . . 5 ((∅ ∈ dom 𝑓 ∧ Fun 𝐺𝑓𝐺) ↔ ((∅ ∈ dom 𝑓 ∧ Fun 𝐺) ∧ 𝑓𝐺))
21 3anrot 1036 . . . . 5 ((∅ ∈ dom 𝑓 ∧ Fun 𝐺𝑓𝐺) ↔ (Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓))
22 ancom 465 . . . . 5 (((∅ ∈ dom 𝑓 ∧ Fun 𝐺) ∧ 𝑓𝐺) ↔ (𝑓𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺)))
2320, 21, 223bitr3i 289 . . . 4 ((Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓) ↔ (𝑓𝐺 ∧ (∅ ∈ dom 𝑓 ∧ Fun 𝐺)))
2419, 23sylibr 223 . . 3 ((𝑅 FrSe 𝐴𝜏𝜎) → (Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓))
25 funssfv 6119 . . 3 ((Fun 𝐺𝑓𝐺 ∧ ∅ ∈ dom 𝑓) → (𝐺‘∅) = (𝑓‘∅))
2624, 25syl 17 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝐺‘∅) = (𝑓‘∅))
271simp2bi 1070 . . 3 (𝜏𝜑′)
28273ad2ant2 1076 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑′)
29 bnj545.1 . . . 4 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
30 eqtr 2629 . . . 4 (((𝐺‘∅) = (𝑓‘∅) ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) → (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
3129, 30sylan2b 491 . . 3 (((𝐺‘∅) = (𝑓‘∅) ∧ 𝜑′) → (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
32 bnj545.7 . . 3 (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))
3331, 32sylibr 223 . 2 (((𝐺‘∅) = (𝑓‘∅) ∧ 𝜑′) → 𝜑″)
3426, 28, 33syl2anc 691 1 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝜑″)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  cdif 3537  cun 3538  wss 3540  c0 3874  {csn 4125  cop 4131   ciun 4455  dom cdm 5038  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  cfv 5804  ωcom 6957   predc-bnj14 30007   FrSe w-bnj15 30011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-om 6958
This theorem is referenced by:  bnj600  30243  bnj908  30255
  Copyright terms: Public domain W3C validator