Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1417 Structured version   Visualization version   GIF version

Theorem bnj1417 30363
Description: Technical lemma for bnj60 30384. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1417.1 (𝜑𝑅 FrSe 𝐴)
bnj1417.2 (𝜓 ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
bnj1417.3 (𝜒 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
bnj1417.4 (𝜃 ↔ (𝜑𝑥𝐴𝜒))
bnj1417.5 𝐵 = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1417 (𝜑 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem bnj1417
StepHypRef Expression
1 bnj1417.1 . . . 4 (𝜑𝑅 FrSe 𝐴)
21biimpi 205 . . 3 (𝜑𝑅 FrSe 𝐴)
3 bnj1417.4 . . . . . 6 (𝜃 ↔ (𝜑𝑥𝐴𝜒))
4 bnj1418 30362 . . . . . . . . . . 11 (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑥𝑅𝑥)
54adantl 481 . . . . . . . . . 10 ((𝜃𝑥 ∈ pred(𝑥, 𝐴, 𝑅)) → 𝑥𝑅𝑥)
63, 2bnj835 30083 . . . . . . . . . . . 12 (𝜃𝑅 FrSe 𝐴)
7 df-bnj15 30012 . . . . . . . . . . . . 13 (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
87simplbi 475 . . . . . . . . . . . 12 (𝑅 FrSe 𝐴𝑅 Fr 𝐴)
96, 8syl 17 . . . . . . . . . . 11 (𝜃𝑅 Fr 𝐴)
10 bnj213 30206 . . . . . . . . . . . 12 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐴
1110sseli 3564 . . . . . . . . . . 11 (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑥𝐴)
12 frirr 5015 . . . . . . . . . . 11 ((𝑅 Fr 𝐴𝑥𝐴) → ¬ 𝑥𝑅𝑥)
139, 11, 12syl2an 493 . . . . . . . . . 10 ((𝜃𝑥 ∈ pred(𝑥, 𝐴, 𝑅)) → ¬ 𝑥𝑅𝑥)
145, 13pm2.65da 598 . . . . . . . . 9 (𝜃 → ¬ 𝑥 ∈ pred(𝑥, 𝐴, 𝑅))
15 nfv 1830 . . . . . . . . . . . . . 14 𝑦𝜑
16 nfv 1830 . . . . . . . . . . . . . 14 𝑦 𝑥𝐴
17 bnj1417.3 . . . . . . . . . . . . . . . 16 (𝜒 ↔ ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
1817bnj1095 30106 . . . . . . . . . . . . . . 15 (𝜒 → ∀𝑦𝜒)
1918nf5i 2011 . . . . . . . . . . . . . 14 𝑦𝜒
2015, 16, 19nf3an 1819 . . . . . . . . . . . . 13 𝑦(𝜑𝑥𝐴𝜒)
213, 20nfxfr 1771 . . . . . . . . . . . 12 𝑦𝜃
226ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
23 simplr 788 . . . . . . . . . . . . . . . . 17 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ pred(𝑥, 𝐴, 𝑅))
2410, 23sseldi 3566 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦𝐴)
25 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
26 bnj1125 30314 . . . . . . . . . . . . . . . 16 ((𝑅 FrSe 𝐴𝑦𝐴𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
2722, 24, 25, 26syl3anc 1318 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → trCl(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑦, 𝐴, 𝑅))
28 bnj1147 30316 . . . . . . . . . . . . . . . . . 18 trCl(𝑦, 𝐴, 𝑅) ⊆ 𝐴
2928, 25sseldi 3566 . . . . . . . . . . . . . . . . 17 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑥𝐴)
30 bnj906 30254 . . . . . . . . . . . . . . . . 17 ((𝑅 FrSe 𝐴𝑥𝐴) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3122, 29, 30syl2anc 691 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → pred(𝑥, 𝐴, 𝑅) ⊆ trCl(𝑥, 𝐴, 𝑅))
3231, 23sseldd 3569 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ trCl(𝑥, 𝐴, 𝑅))
3327, 32sseldd 3569 . . . . . . . . . . . . . 14 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
3417biimpi 205 . . . . . . . . . . . . . . . . . 18 (𝜒 → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
353, 34bnj837 30085 . . . . . . . . . . . . . . . . 17 (𝜃 → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
3635ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → ∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓))
37 bnj1418 30362 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑦𝑅𝑥)
3837ad2antlr 759 . . . . . . . . . . . . . . . 16 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → 𝑦𝑅𝑥)
39 rsp 2913 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓) → (𝑦𝐴 → (𝑦𝑅𝑥[𝑦 / 𝑥]𝜓)))
4036, 24, 38, 39syl3c 64 . . . . . . . . . . . . . . 15 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → [𝑦 / 𝑥]𝜓)
41 vex 3176 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
42 bnj1417.2 . . . . . . . . . . . . . . . . 17 (𝜓 ↔ ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
43 eleq1 2676 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑥, 𝐴, 𝑅)))
44 bnj1318 30347 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅))
4544eleq2d 2673 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑦 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4643, 45bitrd 267 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4746notbid 307 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4842, 47syl5bb 271 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝜓 ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅)))
4941, 48sbcie 3437 . . . . . . . . . . . . . . 15 ([𝑦 / 𝑥]𝜓 ↔ ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
5040, 49sylib 207 . . . . . . . . . . . . . 14 (((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) ∧ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)) → ¬ 𝑦 ∈ trCl(𝑦, 𝐴, 𝑅))
5133, 50pm2.65da 598 . . . . . . . . . . . . 13 ((𝜃𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5251ex 449 . . . . . . . . . . . 12 (𝜃 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅)))
5321, 52ralrimi 2940 . . . . . . . . . . 11 (𝜃 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅) ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
54 ralnex 2975 . . . . . . . . . . 11 (∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅) ¬ 𝑥 ∈ trCl(𝑦, 𝐴, 𝑅) ↔ ¬ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5553, 54sylib 207 . . . . . . . . . 10 (𝜃 → ¬ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
56 eliun 4460 . . . . . . . . . 10 (𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ↔ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝑥 ∈ trCl(𝑦, 𝐴, 𝑅))
5755, 56sylnibr 318 . . . . . . . . 9 (𝜃 → ¬ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
58 ioran 510 . . . . . . . . 9 (¬ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ↔ (¬ 𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∧ ¬ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
5914, 57, 58sylanbrc 695 . . . . . . . 8 (𝜃 → ¬ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
603simp2bi 1070 . . . . . . . . . . 11 (𝜃𝑥𝐴)
61 bnj1417.5 . . . . . . . . . . . 12 𝐵 = ( pred(𝑥, 𝐴, 𝑅) ∪ 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
6261bnj1414 30359 . . . . . . . . . . 11 ((𝑅 FrSe 𝐴𝑥𝐴) → trCl(𝑥, 𝐴, 𝑅) = 𝐵)
636, 60, 62syl2anc 691 . . . . . . . . . 10 (𝜃 → trCl(𝑥, 𝐴, 𝑅) = 𝐵)
6463eleq2d 2673 . . . . . . . . 9 (𝜃 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ 𝑥𝐵))
6561bnj1138 30113 . . . . . . . . 9 (𝑥𝐵 ↔ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)))
6664, 65syl6bb 275 . . . . . . . 8 (𝜃 → (𝑥 ∈ trCl(𝑥, 𝐴, 𝑅) ↔ (𝑥 ∈ pred(𝑥, 𝐴, 𝑅) ∨ 𝑥 𝑦 ∈ pred (𝑥, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))))
6759, 66mtbird 314 . . . . . . 7 (𝜃 → ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
6867, 42sylibr 223 . . . . . 6 (𝜃𝜓)
693, 68sylbir 224 . . . . 5 ((𝜑𝑥𝐴𝜒) → 𝜓)
70693exp 1256 . . . 4 (𝜑 → (𝑥𝐴 → (𝜒𝜓)))
7170ralrimiv 2948 . . 3 (𝜑 → ∀𝑥𝐴 (𝜒𝜓))
7217bnj1204 30334 . . 3 ((𝑅 FrSe 𝐴 ∧ ∀𝑥𝐴 (𝜒𝜓)) → ∀𝑥𝐴 𝜓)
732, 71, 72syl2anc 691 . 2 (𝜑 → ∀𝑥𝐴 𝜓)
7442ralbii 2963 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
7573, 74sylib 207 1 (𝜑 → ∀𝑥𝐴 ¬ 𝑥 ∈ trCl(𝑥, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  [wsbc 3402  cun 3538  wss 3540   ciun 4455   class class class wbr 4583   Fr wfr 4994   predc-bnj14 30007   Se w-bnj13 30009   FrSe w-bnj15 30011   trClc-bnj18 30013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-bnj17 30006  df-bnj14 30008  df-bnj13 30010  df-bnj15 30012  df-bnj18 30014  df-bnj19 30016
This theorem is referenced by:  bnj1421  30364
  Copyright terms: Public domain W3C validator