Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1095 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1095.1 | ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
bnj1095 | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1095.1 | . 2 ⊢ (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜓) | |
2 | hbra1 2926 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥∀𝑥 ∈ 𝐴 𝜓) | |
3 | 1, 2 | hbxfrbi 1742 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∀wal 1473 ∀wral 2896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-or 384 df-ex 1696 df-nf 1701 df-ral 2901 |
This theorem is referenced by: bnj1379 30155 bnj605 30231 bnj594 30236 bnj607 30240 bnj911 30256 bnj964 30267 bnj983 30275 bnj1093 30302 bnj1123 30308 bnj1145 30315 bnj1417 30363 |
Copyright terms: Public domain | W3C validator |