Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1110 Structured version   Visualization version   GIF version

Theorem bnj1110 30304
 Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1110.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj1110.7 𝐷 = (ω ∖ {∅})
bnj1110.18 (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
bnj1110.19 (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))
bnj1110.26 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
Assertion
Ref Expression
bnj1110 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))
Distinct variable groups:   𝐷,𝑗   𝑖,𝑗   𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛)   𝜓(𝑓,𝑖,𝑗,𝑛)   𝜒(𝑓,𝑖,𝑗,𝑛)   𝜃(𝑓,𝑖,𝑗,𝑛)   𝜏(𝑓,𝑖,𝑗,𝑛)   𝜎(𝑓,𝑖,𝑗,𝑛)   𝐵(𝑓,𝑖,𝑗,𝑛)   𝐷(𝑓,𝑖,𝑛)   𝐾(𝑓,𝑖,𝑗,𝑛)   𝜂′(𝑓,𝑖,𝑗,𝑛)   𝜑0(𝑓,𝑖,𝑗,𝑛)

Proof of Theorem bnj1110
StepHypRef Expression
1 bnj1110.7 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
21bnj1098 30108 . . . . . . . 8 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
3 bnj219 30055 . . . . . . . . . . 11 (𝑖 = suc 𝑗𝑗 E 𝑖)
43adantl 481 . . . . . . . . . 10 ((𝑗𝑛𝑖 = suc 𝑗) → 𝑗 E 𝑖)
54ancli 572 . . . . . . . . 9 ((𝑗𝑛𝑖 = suc 𝑗) → ((𝑗𝑛𝑖 = suc 𝑗) ∧ 𝑗 E 𝑖))
6 df-3an 1033 . . . . . . . . 9 ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ↔ ((𝑗𝑛𝑖 = suc 𝑗) ∧ 𝑗 E 𝑖))
75, 6sylibr 223 . . . . . . . 8 ((𝑗𝑛𝑖 = suc 𝑗) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖))
82, 7bnj1023 30105 . . . . . . 7 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖))
9 bnj1110.3 . . . . . . . . . . . 12 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
109bnj1232 30128 . . . . . . . . . . 11 (𝜒𝑛𝐷)
11103ad2ant3 1077 . . . . . . . . . 10 ((𝜃𝜏𝜒) → 𝑛𝐷)
12 bnj1110.19 . . . . . . . . . . 11 (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))
1312bnj1232 30128 . . . . . . . . . 10 (𝜑0𝑖𝑛)
1411, 13anim12ci 589 . . . . . . . . 9 (((𝜃𝜏𝜒) ∧ 𝜑0) → (𝑖𝑛𝑛𝐷))
1514anim2i 591 . . . . . . . 8 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑖 ≠ ∅ ∧ (𝑖𝑛𝑛𝐷)))
16 3anass 1035 . . . . . . . 8 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ (𝑖 ≠ ∅ ∧ (𝑖𝑛𝑛𝐷)))
1715, 16sylibr 223 . . . . . . 7 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷))
188, 17bnj1101 30109 . . . . . 6 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖))
19 3simpb 1052 . . . . . . . . 9 ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) → (𝑗𝑛𝑗 E 𝑖))
2012bnj1235 30129 . . . . . . . . . . 11 (𝜑0𝜎)
2120ad2antll 761 . . . . . . . . . 10 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝜎)
22 bnj1110.18 . . . . . . . . . 10 (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
2321, 22sylib 207 . . . . . . . . 9 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))
2419, 23syl5 33 . . . . . . . 8 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) → 𝜂′))
2524a2i 14 . . . . . . 7 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝜂′))
26 pm3.43 902 . . . . . . 7 ((((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖)) ∧ ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝜂′)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))
2725, 26mpdan 699 . . . . . 6 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))
2818, 27bnj101 30043 . . . . 5 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))
2912bnj1247 30133 . . . . . . 7 (𝜑0𝑓𝐾)
3029ad2antll 761 . . . . . 6 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝑓𝐾)
31 pm3.43i 471 . . . . . 6 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → 𝑓𝐾) → (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))))
3230, 31ax-mp 5 . . . . 5 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))))
3328, 32bnj101 30043 . . . 4 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))
34 fndm 5904 . . . . . . . . 9 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
359, 34bnj770 30087 . . . . . . . 8 (𝜒 → dom 𝑓 = 𝑛)
36353ad2ant3 1077 . . . . . . 7 ((𝜃𝜏𝜒) → dom 𝑓 = 𝑛)
3736ad2antrl 760 . . . . . 6 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → dom 𝑓 = 𝑛)
3837eleq2d 2673 . . . . 5 ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗 ∈ dom 𝑓𝑗𝑛))
39 pm3.43i 471 . . . . 5 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗 ∈ dom 𝑓𝑗𝑛)) → (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))))))
4038, 39ax-mp 5 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))) → ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))))
4133, 40bnj101 30043 . . 3 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))))
42 bnj268 30028 . . . . . 6 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ 𝑓𝐾 ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′) ↔ ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′))
43 bnj251 30021 . . . . . 6 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ 𝑓𝐾 ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′) ↔ ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))))
4442, 43bitr3i 265 . . . . 5 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) ↔ ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′))))
4544imbi2i 325 . . . 4 (((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′)) ↔ ((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))))
4645exbii 1764 . . 3 (∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′)) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑓𝐾 ∧ ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′)))))
4741, 46mpbir 220 . 2 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → ((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′))
48 simp1 1054 . . . 4 ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) → 𝑗𝑛)
4948bnj706 30078 . . 3 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → 𝑗𝑛)
50 simp2 1055 . . . 4 ((𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) → 𝑖 = suc 𝑗)
5150bnj706 30078 . . 3 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → 𝑖 = suc 𝑗)
52 bnj258 30027 . . . . 5 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) ↔ (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝜂′) ∧ 𝑓𝐾))
5352simprbi 479 . . . 4 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → 𝑓𝐾)
54 bnj642 30072 . . . . 5 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → (𝑗 ∈ dom 𝑓𝑗𝑛))
5549, 54mpbird 246 . . . 4 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → 𝑗 ∈ dom 𝑓)
56 bnj645 30074 . . . . 5 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → 𝜂′)
57 bnj1110.26 . . . . 5 (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
5856, 57sylib 207 . . . 4 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
5953, 55, 58mp2and 711 . . 3 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → (𝑓𝑗) ⊆ 𝐵)
6049, 51, 593jca 1235 . 2 (((𝑗 ∈ dom 𝑓𝑗𝑛) ∧ (𝑗𝑛𝑖 = suc 𝑗𝑗 E 𝑖) ∧ 𝑓𝐾𝜂′) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))
6147, 60bnj1023 30105 1 𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780   ∖ cdif 3537   ⊆ wss 3540  ∅c0 3874  {csn 4125   class class class wbr 4583   E cep 4947  dom cdm 5038  suc csuc 5642   Fn wfn 5799  ‘cfv 5804  ωcom 6957   ∧ w-bnj17 30005 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-fn 5807  df-om 6958  df-bnj17 30006 This theorem is referenced by:  bnj1118  30306
 Copyright terms: Public domain W3C validator