Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1110 Structured version   Unicode version

Theorem bnj1110 32992
Description: Technical lemma for bnj69 33020. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1110.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1110.7  |-  D  =  ( om  \  { (/)
} )
bnj1110.18  |-  ( si  <->  ( ( j  e.  n  /\  j  _E  i
)  ->  et' ) )
bnj1110.19  |-  ( ph0  <->  (
i  e.  n  /\  si 
/\  f  e.  K  /\  i  e.  dom  f ) )
bnj1110.26  |-  ( et'  <->  (
( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) )
Assertion
Ref Expression
bnj1110  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) )
Distinct variable groups:    D, j    i, j    j, n
Allowed substitution hints:    ph( f, i, j, n)    ps( f,
i, j, n)    ch( f, i, j, n)    th( f,
i, j, n)    ta( f, i, j, n)    si( f,
i, j, n)    B( f, i, j, n)    D( f, i, n)    K( f,
i, j, n)    et'( f, i, j, n)    ph0( f, i, j, n)

Proof of Theorem bnj1110
StepHypRef Expression
1 bnj1110.7 . . . . . . . . 9  |-  D  =  ( om  \  { (/)
} )
21bnj1098 32796 . . . . . . . 8  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j ) )
3 bnj219 32743 . . . . . . . . . . 11  |-  ( i  =  suc  j  -> 
j  _E  i )
43adantl 466 . . . . . . . . . 10  |-  ( ( j  e.  n  /\  i  =  suc  j )  ->  j  _E  i
)
54ancli 551 . . . . . . . . 9  |-  ( ( j  e.  n  /\  i  =  suc  j )  ->  ( ( j  e.  n  /\  i  =  suc  j )  /\  j  _E  i )
)
6 df-3an 970 . . . . . . . . 9  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  <->  ( ( j  e.  n  /\  i  =  suc  j )  /\  j  _E  i ) )
75, 6sylibr 212 . . . . . . . 8  |-  ( ( j  e.  n  /\  i  =  suc  j )  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )
82, 7bnj1023 32793 . . . . . . 7  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )
9 bnj1110.3 . . . . . . . . . . . 12  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
109bnj1232 32816 . . . . . . . . . . 11  |-  ( ch 
->  n  e.  D
)
11103ad2ant3 1014 . . . . . . . . . 10  |-  ( ( th  /\  ta  /\  ch )  ->  n  e.  D )
12 bnj1110.19 . . . . . . . . . . 11  |-  ( ph0  <->  (
i  e.  n  /\  si 
/\  f  e.  K  /\  i  e.  dom  f ) )
1312bnj1232 32816 . . . . . . . . . 10  |-  ( ph0  ->  i  e.  n )
1411, 13anim12ci 567 . . . . . . . . 9  |-  ( ( ( th  /\  ta  /\ 
ch )  /\  ph0 )  ->  ( i  e.  n  /\  n  e.  D
) )
1514anim2i 569 . . . . . . . 8  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( i  =/=  (/)  /\  ( i  e.  n  /\  n  e.  D ) ) )
16 3anass 972 . . . . . . . 8  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  <->  ( i  =/=  (/)  /\  ( i  e.  n  /\  n  e.  D ) ) )
1715, 16sylibr 212 . . . . . . 7  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )
188, 17bnj1101 32797 . . . . . 6  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
) )
19 3simpb 989 . . . . . . . . 9  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  ( j  e.  n  /\  j  _E  i
) )
2012bnj1235 32817 . . . . . . . . . . 11  |-  ( ph0  ->  si )
2120ad2antll 728 . . . . . . . . . 10  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  si )
22 bnj1110.18 . . . . . . . . . 10  |-  ( si  <->  ( ( j  e.  n  /\  j  _E  i
)  ->  et' ) )
2321, 22sylib 196 . . . . . . . . 9  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  j  _E  i )  ->  et' ) )
2419, 23syl5 32 . . . . . . . 8  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  et' ) )
2524a2i 13 . . . . . . 7  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )  -> 
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  ->  et' ) )
26 pm3.43 858 . . . . . . 7  |-  ( ( ( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
) )  /\  (
( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  et' ) )  ->  ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) )
2725, 26mpdan 668 . . . . . 6  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )  -> 
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) )
2818, 27bnj101 32731 . . . . 5  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) )
2912bnj1247 32821 . . . . . . 7  |-  ( ph0  ->  f  e.  K )
3029ad2antll 728 . . . . . 6  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  f  e.  K )
31 pm3.43i 456 . . . . . 6  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  f  e.  K )  ->  (
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) )  ->  ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) ) ) )
3230, 31ax-mp 5 . . . . 5  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) )  ->  (
( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) ) )
3328, 32bnj101 32731 . . . 4  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) )
34 fndm 5671 . . . . . . . . 9  |-  ( f  Fn  n  ->  dom  f  =  n )
359, 34bnj770 32775 . . . . . . . 8  |-  ( ch 
->  dom  f  =  n )
36353ad2ant3 1014 . . . . . . 7  |-  ( ( th  /\  ta  /\  ch )  ->  dom  f  =  n )
3736ad2antrl 727 . . . . . 6  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  dom  f  =  n )
3837eleq2d 2530 . . . . 5  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  dom  f  <->  j  e.  n ) )
39 pm3.43i 456 . . . . 5  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  dom  f  <->  j  e.  n ) )  -> 
( ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) )  ->  ( (
i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) ) )
4038, 39ax-mp 5 . . . 4  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) )  ->  ( (
i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) )
4133, 40bnj101 32731 . . 3  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e. 
dom  f  <->  j  e.  n )  /\  (
f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) )
42 bnj268 32716 . . . . . 6  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  f  e.  K  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' )  <->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  f  e.  K  /\  et' ) )
43 bnj251 32709 . . . . . 6  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  f  e.  K  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' )  <->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) )
4442, 43bitr3i 251 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  <->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) )
4544imbi2i 312 . . . 4  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  f  e.  K  /\  et' ) )  <->  ( (
i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) )
4645exbii 1639 . . 3  |-  ( E. j ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  f  e.  K  /\  et' ) )  <->  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e. 
dom  f  <->  j  e.  n )  /\  (
f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) )
4741, 46mpbir 209 . 2  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e. 
dom  f  <->  j  e.  n )  /\  (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' ) )
48 simp1 991 . . . 4  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  j  e.  n )
4948bnj706 32765 . . 3  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
j  e.  n )
50 simp2 992 . . . 4  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  i  =  suc  j
)
5150bnj706 32765 . . 3  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
i  =  suc  j
)
52 bnj258 32715 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  <->  ( (
( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' )  /\  f  e.  K )
)
5352simprbi 464 . . . 4  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
f  e.  K )
54 bnj642 32759 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( j  e.  dom  f 
<->  j  e.  n ) )
5549, 54mpbird 232 . . . 4  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
j  e.  dom  f
)
56 bnj645 32761 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  ->  et' )
57 bnj1110.26 . . . . 5  |-  ( et'  <->  (
( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) )
5856, 57sylib 196 . . . 4  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( ( f  e.  K  /\  j  e. 
dom  f )  -> 
( f `  j
)  C_  B )
)
5953, 55, 58mp2and 679 . . 3  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( f `  j
)  C_  B )
6049, 51, 593jca 1171 . 2  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) )
6147, 60bnj1023 32793 1  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374   E.wex 1591    e. wcel 1762    =/= wne 2655    \ cdif 3466    C_ wss 3469   (/)c0 3778   {csn 4020   class class class wbr 4440    _E cep 4782   suc csuc 4873   dom cdm 4992    Fn wfn 5574   ` cfv 5579   omcom 6671    /\ w-bnj17 32693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-tr 4534  df-eprel 4784  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-fn 5582  df-om 6672  df-bnj17 32694
This theorem is referenced by:  bnj1118  32994
  Copyright terms: Public domain W3C validator