Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1110 Structured version   Unicode version

Theorem bnj1110 33771
Description: Technical lemma for bnj69 33799. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1110.3  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
bnj1110.7  |-  D  =  ( om  \  { (/)
} )
bnj1110.18  |-  ( si  <->  ( ( j  e.  n  /\  j  _E  i
)  ->  et' ) )
bnj1110.19  |-  ( ph0  <->  (
i  e.  n  /\  si 
/\  f  e.  K  /\  i  e.  dom  f ) )
bnj1110.26  |-  ( et'  <->  (
( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) )
Assertion
Ref Expression
bnj1110  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) )
Distinct variable groups:    D, j    i, j    j, n
Allowed substitution hints:    ph( f, i, j, n)    ps( f,
i, j, n)    ch( f, i, j, n)    th( f,
i, j, n)    ta( f, i, j, n)    si( f,
i, j, n)    B( f, i, j, n)    D( f, i, n)    K( f,
i, j, n)    et'( f, i, j, n)    ph0( f, i, j, n)

Proof of Theorem bnj1110
StepHypRef Expression
1 bnj1110.7 . . . . . . . . 9  |-  D  =  ( om  \  { (/)
} )
21bnj1098 33575 . . . . . . . 8  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j ) )
3 bnj219 33521 . . . . . . . . . . 11  |-  ( i  =  suc  j  -> 
j  _E  i )
43adantl 466 . . . . . . . . . 10  |-  ( ( j  e.  n  /\  i  =  suc  j )  ->  j  _E  i
)
54ancli 551 . . . . . . . . 9  |-  ( ( j  e.  n  /\  i  =  suc  j )  ->  ( ( j  e.  n  /\  i  =  suc  j )  /\  j  _E  i )
)
6 df-3an 976 . . . . . . . . 9  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  <->  ( ( j  e.  n  /\  i  =  suc  j )  /\  j  _E  i ) )
75, 6sylibr 212 . . . . . . . 8  |-  ( ( j  e.  n  /\  i  =  suc  j )  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )
82, 7bnj1023 33572 . . . . . . 7  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )
9 bnj1110.3 . . . . . . . . . . . 12  |-  ( ch  <->  ( n  e.  D  /\  f  Fn  n  /\  ph 
/\  ps ) )
109bnj1232 33595 . . . . . . . . . . 11  |-  ( ch 
->  n  e.  D
)
11103ad2ant3 1020 . . . . . . . . . 10  |-  ( ( th  /\  ta  /\  ch )  ->  n  e.  D )
12 bnj1110.19 . . . . . . . . . . 11  |-  ( ph0  <->  (
i  e.  n  /\  si 
/\  f  e.  K  /\  i  e.  dom  f ) )
1312bnj1232 33595 . . . . . . . . . 10  |-  ( ph0  ->  i  e.  n )
1411, 13anim12ci 567 . . . . . . . . 9  |-  ( ( ( th  /\  ta  /\ 
ch )  /\  ph0 )  ->  ( i  e.  n  /\  n  e.  D
) )
1514anim2i 569 . . . . . . . 8  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( i  =/=  (/)  /\  ( i  e.  n  /\  n  e.  D ) ) )
16 3anass 978 . . . . . . . 8  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  <->  ( i  =/=  (/)  /\  ( i  e.  n  /\  n  e.  D ) ) )
1715, 16sylibr 212 . . . . . . 7  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )
188, 17bnj1101 33576 . . . . . 6  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
) )
19 3simpb 995 . . . . . . . . 9  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  ( j  e.  n  /\  j  _E  i
) )
2012bnj1235 33596 . . . . . . . . . . 11  |-  ( ph0  ->  si )
2120ad2antll 728 . . . . . . . . . 10  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  si )
22 bnj1110.18 . . . . . . . . . 10  |-  ( si  <->  ( ( j  e.  n  /\  j  _E  i
)  ->  et' ) )
2321, 22sylib 196 . . . . . . . . 9  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  j  _E  i )  ->  et' ) )
2419, 23syl5 32 . . . . . . . 8  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  et' ) )
2524a2i 13 . . . . . . 7  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )  -> 
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  ->  et' ) )
26 pm3.43 862 . . . . . . 7  |-  ( ( ( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
) )  /\  (
( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  et' ) )  ->  ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) )
2725, 26mpdan 668 . . . . . 6  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i ) )  -> 
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) )
2818, 27bnj101 33509 . . . . 5  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) )
2912bnj1247 33600 . . . . . . 7  |-  ( ph0  ->  f  e.  K )
3029ad2antll 728 . . . . . 6  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  f  e.  K )
31 pm3.43i 456 . . . . . 6  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  f  e.  K )  ->  (
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) )  ->  ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) ) ) )
3230, 31ax-mp 5 . . . . 5  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) )  ->  (
( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) ) )
3328, 32bnj101 33509 . . . 4  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) )
34 fndm 5670 . . . . . . . . 9  |-  ( f  Fn  n  ->  dom  f  =  n )
359, 34bnj770 33554 . . . . . . . 8  |-  ( ch 
->  dom  f  =  n )
36353ad2ant3 1020 . . . . . . 7  |-  ( ( th  /\  ta  /\  ch )  ->  dom  f  =  n )
3736ad2antrl 727 . . . . . 6  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  dom  f  =  n )
3837eleq2d 2513 . . . . 5  |-  ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  dom  f  <->  j  e.  n ) )
39 pm3.43i 456 . . . . 5  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( j  e.  dom  f  <->  j  e.  n ) )  -> 
( ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) )  ->  ( (
i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) ) )
4038, 39ax-mp 5 . . . 4  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( f  e.  K  /\  (
( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' ) ) )  ->  ( (
i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) )
4133, 40bnj101 33509 . . 3  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e. 
dom  f  <->  j  e.  n )  /\  (
f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) )
42 bnj268 33494 . . . . . 6  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  f  e.  K  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' )  <->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  f  e.  K  /\  et' ) )
43 bnj251 33487 . . . . . 6  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  f  e.  K  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  et' )  <->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) )
4442, 43bitr3i 251 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  <->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) )
4544imbi2i 312 . . . 4  |-  ( ( ( i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  f  e.  K  /\  et' ) )  <->  ( (
i  =/=  (/)  /\  (
( th  /\  ta  /\ 
ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) )
4645exbii 1654 . . 3  |-  ( E. j ( ( i  =/=  (/)  /\  ( ( th  /\  ta  /\  ch )  /\  ph0 )
)  ->  ( (
j  e.  dom  f  <->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i
)  /\  f  e.  K  /\  et' ) )  <->  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e. 
dom  f  <->  j  e.  n )  /\  (
f  e.  K  /\  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' ) ) ) ) )
4741, 46mpbir 209 . 2  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( ( j  e. 
dom  f  <->  j  e.  n )  /\  (
j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' ) )
48 simp1 997 . . . 4  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  j  e.  n )
4948bnj706 33544 . . 3  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
j  e.  n )
50 simp2 998 . . . 4  |-  ( ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  ->  i  =  suc  j
)
5150bnj706 33544 . . 3  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
i  =  suc  j
)
52 bnj258 33493 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  <->  ( (
( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  et' )  /\  f  e.  K )
)
5352simprbi 464 . . . 4  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
f  e.  K )
54 bnj642 33538 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( j  e.  dom  f 
<->  j  e.  n ) )
5549, 54mpbird 232 . . . 4  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
j  e.  dom  f
)
56 bnj645 33540 . . . . 5  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  ->  et' )
57 bnj1110.26 . . . . 5  |-  ( et'  <->  (
( f  e.  K  /\  j  e.  dom  f )  ->  (
f `  j )  C_  B ) )
5856, 57sylib 196 . . . 4  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( ( f  e.  K  /\  j  e. 
dom  f )  -> 
( f `  j
)  C_  B )
)
5953, 55, 58mp2and 679 . . 3  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( f `  j
)  C_  B )
6049, 51, 593jca 1177 . 2  |-  ( ( ( j  e.  dom  f 
<->  j  e.  n )  /\  ( j  e.  n  /\  i  =  suc  j  /\  j  _E  i )  /\  f  e.  K  /\  et' )  -> 
( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) )
6147, 60bnj1023 33572 1  |-  E. j
( ( i  =/=  (/)  /\  ( ( th 
/\  ta  /\  ch )  /\  ph0 ) )  -> 
( j  e.  n  /\  i  =  suc  j  /\  ( f `  j )  C_  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383   E.wex 1599    e. wcel 1804    =/= wne 2638    \ cdif 3458    C_ wss 3461   (/)c0 3770   {csn 4014   class class class wbr 4437    _E cep 4779   suc csuc 4870   dom cdm 4989    Fn wfn 5573   ` cfv 5578   omcom 6685    /\ w-bnj17 33471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-tr 4531  df-eprel 4781  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-fn 5581  df-om 6686  df-bnj17 33472
This theorem is referenced by:  bnj1118  33773
  Copyright terms: Public domain W3C validator