Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1098 Structured version   Visualization version   GIF version

Theorem bnj1098 30108
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1098.1 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj1098 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
Distinct variable groups:   𝐷,𝑗   𝑖,𝑗   𝑗,𝑛
Allowed substitution hints:   𝐷(𝑖,𝑛)

Proof of Theorem bnj1098
StepHypRef Expression
1 3anrev 1042 . . . . . . 7 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ (𝑛𝐷𝑖𝑛𝑖 ≠ ∅))
2 df-3an 1033 . . . . . . 7 ((𝑛𝐷𝑖𝑛𝑖 ≠ ∅) ↔ ((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅))
31, 2bitri 263 . . . . . 6 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) ↔ ((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅))
4 simpr 476 . . . . . . . 8 ((𝑛𝐷𝑖𝑛) → 𝑖𝑛)
5 bnj1098.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
65bnj923 30092 . . . . . . . . 9 (𝑛𝐷𝑛 ∈ ω)
76adantr 480 . . . . . . . 8 ((𝑛𝐷𝑖𝑛) → 𝑛 ∈ ω)
8 elnn 6967 . . . . . . . 8 ((𝑖𝑛𝑛 ∈ ω) → 𝑖 ∈ ω)
94, 7, 8syl2anc 691 . . . . . . 7 ((𝑛𝐷𝑖𝑛) → 𝑖 ∈ ω)
109anim1i 590 . . . . . 6 (((𝑛𝐷𝑖𝑛) ∧ 𝑖 ≠ ∅) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅))
113, 10sylbi 206 . . . . 5 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑖 ∈ ω ∧ 𝑖 ≠ ∅))
12 nnsuc 6974 . . . . 5 ((𝑖 ∈ ω ∧ 𝑖 ≠ ∅) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗)
1311, 12syl 17 . . . 4 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗)
14 df-rex 2902 . . . . . 6 (∃𝑗 ∈ ω 𝑖 = suc 𝑗 ↔ ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))
1514imbi2i 325 . . . . 5 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
16 19.37v 1897 . . . . 5 (∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗(𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
1715, 16bitr4i 266 . . . 4 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ∃𝑗 ∈ ω 𝑖 = suc 𝑗) ↔ ∃𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)))
1813, 17mpbi 219 . . 3 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗))
19 ancr 570 . . 3 (((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗 ∈ ω ∧ 𝑖 = suc 𝑗)) → ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷))))
2018, 19bnj101 30043 . 2 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → ((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)))
21 vex 3176 . . . . . 6 𝑗 ∈ V
2221bnj216 30054 . . . . 5 (𝑖 = suc 𝑗𝑗𝑖)
2322ad2antlr 759 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑗𝑖)
24 simpr2 1061 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑖𝑛)
25 3simpc 1053 . . . . . . 7 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑖𝑛𝑛𝐷))
2625ancomd 466 . . . . . 6 ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑛𝐷𝑖𝑛))
2726adantl 481 . . . . 5 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → (𝑛𝐷𝑖𝑛))
28 nnord 6965 . . . . 5 (𝑛 ∈ ω → Ord 𝑛)
29 ordtr1 5684 . . . . 5 (Ord 𝑛 → ((𝑗𝑖𝑖𝑛) → 𝑗𝑛))
3027, 7, 28, 294syl 19 . . . 4 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → ((𝑗𝑖𝑖𝑛) → 𝑗𝑛))
3123, 24, 30mp2and 711 . . 3 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑗𝑛)
32 simplr 788 . . 3 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → 𝑖 = suc 𝑗)
3331, 32jca 553 . 2 (((𝑗 ∈ ω ∧ 𝑖 = suc 𝑗) ∧ (𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷)) → (𝑗𝑛𝑖 = suc 𝑗))
3420, 33bnj1023 30105 1 𝑗((𝑖 ≠ ∅ ∧ 𝑖𝑛𝑛𝐷) → (𝑗𝑛𝑖 = suc 𝑗))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  cdif 3537  c0 3874  {csn 4125  Ord word 5639  suc csuc 5642  ωcom 6957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-om 6958
This theorem is referenced by:  bnj1110  30304  bnj1128  30312  bnj1145  30315
  Copyright terms: Public domain W3C validator