Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bits0ALTV | Structured version Visualization version GIF version |
Description: Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) |
Ref | Expression |
---|---|
bits0ALTV | ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 11184 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | bitsval2 14985 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℕ0) → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑0))))) | |
3 | 1, 2 | mpan2 703 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑0))))) |
4 | 2cn 10968 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
5 | exp0 12726 | . . . . . . . . 9 ⊢ (2 ∈ ℂ → (2↑0) = 1) | |
6 | 4, 5 | ax-mp 5 | . . . . . . . 8 ⊢ (2↑0) = 1 |
7 | 6 | oveq2i 6560 | . . . . . . 7 ⊢ (𝑁 / (2↑0)) = (𝑁 / 1) |
8 | zcn 11259 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
9 | 8 | div1d 10672 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (𝑁 / 1) = 𝑁) |
10 | 7, 9 | syl5eq 2656 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (𝑁 / (2↑0)) = 𝑁) |
11 | 10 | fveq2d 6107 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / (2↑0))) = (⌊‘𝑁)) |
12 | flid 12471 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁) | |
13 | 11, 12 | eqtrd 2644 | . . . 4 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 / (2↑0))) = 𝑁) |
14 | 13 | breq2d 4595 | . . 3 ⊢ (𝑁 ∈ ℤ → (2 ∥ (⌊‘(𝑁 / (2↑0))) ↔ 2 ∥ 𝑁)) |
15 | 14 | notbid 307 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ (⌊‘(𝑁 / (2↑0))) ↔ ¬ 2 ∥ 𝑁)) |
16 | isodd3 40103 | . . 3 ⊢ (𝑁 ∈ Odd ↔ (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁)) | |
17 | 16 | baibr 943 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 𝑁 ∈ Odd )) |
18 | 3, 15, 17 | 3bitrd 293 | 1 ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 195 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 0cc0 9815 1c1 9816 / cdiv 10563 2c2 10947 ℕ0cn0 11169 ℤcz 11254 ⌊cfl 12453 ↑cexp 12722 ∥ cdvds 14821 bitscbits 14979 Odd codd 40076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-inf 8232 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-fl 12455 df-seq 12664 df-exp 12723 df-dvds 14822 df-bits 14982 df-odd 40078 |
This theorem is referenced by: bits0eALTV 40129 bits0oALTV 40130 |
Copyright terms: Public domain | W3C validator |